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Abstract: Merging new sensing technologies with machine learning methods can be used as a tool 

to recognize complex activities. A wearable PM sensor in combination with a motion tracker was 

provided to 97 individuals for 7 days in two seasons. These data sets were used in three different 

models, based on three classification of activity algorithms: IBk, J48 and RandomForest, which 

showed for hourly (minute) an accuracy of 31.0 (23.1)%, 28.6 (22.0)% and 35.7 (23.0)%, respectively. 

Most misclassified instances concerned vaguely defined activities. Low accuracy can also be 

explained with the differences in time scales. The accuracy could be improved by more clearly 

defining the activities and collecting per-minute data. 
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1. Introduction 

Exposure to particulate matter (PM) and the intake dose can be heavily dependent on a specific 

activity an individual is performing [1,2]. By aggregating data per activity, instead of per time 

interval, the user is provided with another view to better discern where steps should be taken to 

reduce possible harm, caused by increased PM exposure or intake dose. Although activity 

recognition software is widely used in many commercial and research devices, confined to 

recognizing simpler activities, such as walking, running or other sports activities [3,4]. Recognizing 

complex activities still proves to be quite challenging [5]. Devices (in general) use integrated 

movement sensors, such as accelerometers and gyroscopes, for activity recognition. These sensors 

are also present in smartphones, allowing them to perform activity recognition, e.g., counting steps. 

Adding environmental sensors to the input dataset could potentially improve the accuracy of 

recognition of complex activities. Measuring the concentration of PM, the temperature and relative 

humidity in the vicinity of an individual could give valuable insight into their activity. Elevated levels 

of PM have been found for complex activities, such as cooking, cleaning and smoking [6–8], and 

combining these data points with ambient temperature, heart rate, and movement could allow the 
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algorithms to distinguish between these activities, e.g., high PM and high temperature for cooking, 

high PM and low heart rate for smoking, etc. 

Machine learning classification algorithms can be used for activity recognition, and with 

powerful algorithms, such as Random Forest, the percent of accurately labeled instances is in certain 

cases >99% [3,4]. A training dataset which provides quality data (“quality” can be differently defined 

on a case by case basis) can sufficiently train the model to provide high accuracy from correctly 

labeling data points. This can sometimes mean that the model needs data with high temporal 

resolution or clearly defined activity labels, clearly delimited sets of activities, etc. 

2. Methodlogy 

2.1. Data Collection 

Data used in the study was collected from 97 participants in the ICARUS campaign [9]. Most 

participants were involved in the winter (February to March 2019) and summer (April to June 2019) 

season of the campaign for approximately 7 days each and equipped with two sensor devices: 

1. A Garmin Vivosmart 3 Smart Activity Tracker (SAT) [10], which was strapped on each 

participant’s wrist for the entire duration of the data collection period. Temporal resolution for 

the data was one minute. The data used from the SAT was primarily the average minute heart 

rate and the number of steps and distance per minute, which indicated movement. 

2. A Portable PM measuring device (PPM), which was developed for the ICARUS project by IoTech 

Telecommunications [11], using a Plantower [12] pms5003 sensor, based on the laser light 

scattering principle. The device provided minute resolution data for three size classes of PM (1 

µm, 2.5 µm, 10 µm), temperature, relative humidity and speed. 

All participants had to fill out a Time Activity Diary (TAD), where information about their 

activities was provided for each hour. They were given 7 blank daily TADs, where they were able to 

fill in circles for each activity they performed for every hour of the day. These files were collected and 

digitalized. Information about all indoor and outdoor activities was used. 

2.2. Data Overview 

The minimum, 1st quartile, median, mean, 3rd quartile, and maximum values for all numeric 

variables in the final dataset are presented in Table 1. 

After cleaning the data, all values are within expected limits. The PM values were fixed at 180 

µg/m3 as the highest possible value, otherwise the mean, median and quartile values are as expected. 

Values for speed are quite low, due to the fact that all values above 20 km/h were removed, as there 

are no activities included in this research where speed could be above 20 km/h. 

Table 1. Basic statistics for all numeric variables in the dataset. 

 Median Mean Max Min 1st Q 3rd Q 

PM1 [µg/m3] 9.0 15.2 180 0.0 5.0 17.0 

PM2.5 [µg/m3] 12.0 21.2 180 0.0 7.0 24.0 

PM10 [µg/m3] 13.0 23.7 180 0.0 7.0 26.0 

Temperature [°C] 24.1 24.0 35.2 5.8 22.8 25.3 

Relative humidity [%] 32.7 33.0 80.7 6.7 28 37.9 

Speed [km/h] 0.52 1.21 20.0 0 0 1.65 

Avg. Heart rate [bpm] 71.0 74.1 205 34 62 83 

Steps [nr.] 0 5.40 276 0 0 0 

For a more thorough overview of the dataset, the average values, were calculated for each 

activity separately and plotted in Figure 1. 

Running has the highest value of speed, heart rate, steps and MET, and the lowest for 

temperature. sports.OUT and sports.IN also stand out in all of these values, while also having low 



Eng. Proc. 2020, 1, FOR PEER REVIEW 3 

 

average PM concentrations. Importantly, sports.IN has also a higher average temperature and 

relative humidity than sports.OUT. 

Highest PM values are observed for smoking, followed by cooking and cleaning, and lowest for 

sleep. Sleep also has the lowest speed, heart rate, number of steps and MET, all of which is expected. 

It doesn’t stand out in regard to temperature and humidity. 

 

Figure 1. Average values for all variables and activities. 

2.3. Classifiers Used 

Three classification algorithms were chosen, based on best practices and recommendations. The 

classifiers used are listed in Table 1 along with a short description of each. All of these algorithms are 

included in WEKA 3.8.3 [13], which was used for the analysis. After the data was imported to WEKA 

and before it was analyzed, it was normalized by rescaling all attributes to the range of 0 to 1 as the 

distribution was not Gaussian. 

Table 1. Classifiers used in this research with a short description. 

Classifier Description 

IBk [14] 
Instance Based learner, otherwise known as the k-nearest neighbor (kNN) 

classifier; selects value of k based on internal cross-validation. 

J48 [15] 

J48 is a Java implementation of the C4.5 decision tree algorithm developed in 

1993 by Ross Quinlan [16]. It can be used for classification and allows a high 

number of attributes. Deemed as “machine learning workhorse”, ranked nr. 1 

in the Top 10 Algorithms in Data Mining [17]. 

RandomForest 

[18] 

Constructs a forest of decision trees in a randomized manner. Developed by 

Leo Breiman in 2001 [19]. 

3. Results and Discussion 

3.1. Comparing Classifiers 

There are several measures of predictive performance of classifiers, such as the overall 

classification accuracy and the Κ coefficient, and the (per-class and average) true positive (TP) and 

false positive (FP) rates, and precision, among others. Table 4 shows a comparison of the listed metrics 

for all the classifiers used in this research. 



Eng. Proc. 2020, 1, FOR PEER REVIEW 4 

 

10-fold cross-validation was used the evaluation methodology. 

Table 2. Summary of results for all models. 

Classifier Correctly Classified Kappa TP FP Precision ROC Area PRC Area 

IBk 32.7% 0.2424 0.327 0.084 0.363 0.621 0.220 

J48 39.5% 0.3195 0.395 0.076 0.407 0.767 0.370 

RandomForest 43.1% 0.3601 0.431 0.071 0.432 0.807 0.444 

As evident in Table 4, the RandomForest method mostly preforms better in this specific task 

than IBk and J48. It correctly classifies 10.4 percentage points of instances more than IBk and 3.6 

percentage points more than J48. Its Kappa coefficient is also better than IBk and J48. FP rates are 

lower and TP rates are higher for RandomForrest. All metrics show that in terms of accurately 

predicting an activity the models can be ranked: RandomForest > J48 > IBk. 

3.2. IBk 

The IBk classifier correctly classified 2939 (32.7%) of instances, with a Κ (Kappa Coefficient) of 

0.2424. True positive (TP) rates are >0.4 for two activities: the highest (0.7) for sleeping, the next best 

for resting (0.5). Most misclassified instances of sleep were labeled as resting. This is expected, as the 

two activities share several similar characteristics, such as low heart rate, no movement and low levels 

of PM. 

A relevant observation is that sleeping typically has very clearly defined time intervals (at night), 

a low heart rate and no movement. Sleeping is also one of the few activities that every participant 

indicated and is consequently very homogeneously distributed. On top of this, it is the only activity 

that is performed consecutively for several hours, without interruptions, which in turn means that 

there are very few instances where there are distorted minute values present inside an hour. An 

example of such distorted values would be that a person only runs for 20 min, but indicates that 

running was the main activity in that hour. Only 1/3 of the data would really confirm this fact, the 

other 40 min are other activities, which distort the final result. On the other hand, this is not common 

for sleeping, as most people sleep in one single block of time. 

Resting is also somewhat characterized with longer consecutive time intervals without 

interruptions. It also has the most misclassifications and highest False positive (FP) rate, which is due 

to the fact that resting is the second most frequent activity chosen by participants (after sleeping) in 

the whole study and in turn should overlap with most activities very frequently (the “default” 

activity being resting). It is also vaguely defined and open to interpretation, which can prompt 

participants to include a whole swath of activities under this term, e.g., reading a book, playing board 

or computer games, watching television, chatting with friends, taking a leisurely walk, napping, 

having a dinner party, etc. All of these activities can differ in many aspects, such as heart rate, 

movement, speed or PM concentrations, which would make accurate predictions more difficult. 

Besides sleeping and resting, TP rates are >0.25 for all activities, with the example of smoking 

(0.030). An interesting observation is that running also had quite a small False positive (FP) rate of 

0.009, mostly being misclassified as sports outdoors. This could also be a consequence of activities 

being mislabeled by the participants (confusing sports outdoors and running when labeling 

activities). 

3.3. J48 

Results show that the model learned by J48 correctly classified approximately 22.0% of instances, 

with a Κ value of 0.1221. One noticeable difference of TP rate is evident with cooking, where it was 

0.187 with IBk and 0.320 with J48, otherwise the TP values do not differ much between the different 

models. Similar patterns are obvious with all other measures of accuracy. 

Running has the lowest number of misclassified instances, where most of the latter are labeled 

as being indoor or outdoor sports activities. This is expected, as these activities share a distinctive 
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pattern of an elevated heart rate and more movement. In this case, resting faired a bit worse than 

with IBk as there are fewer correctly classified instances. 

3.4. RandomForest 

The results from the model based on RandomForest, showed the highest accuracy (23.6%) and 

lowest errors. Although the TP and FP values are somewhat higher, they don’t differ much from IBk 

and J48, with sleeping and resting being again on top with 0.790 and 0.408 TP rates, respectively. A 

similar pattern as in the previous classifiers was observed in the confusion matrix, where running 

had the fewest misclassified instances, mostly being sports outdoors. Again, very few activities were 

misclassified as sleeping, the only outlier being resting with 74 misclassifications. 

4. Conclusions 

All the used classifiers had accuracy above 30%, with RandomForest being the most accurate 

(43.1%). As the labeled data consisted of hourly labeled activities, this gives it less resolution and 

more errors (some activities don’t last an hour, and most don’t last exactly a set number of full hours). 

A future improvement would be to label data by minute, not by hour. This would match the desired 

output of per-minute predictions and allow finer granularity. 

All of the models had the most misclassified instances from resting activity. This could be the 

result of the vague definition of resting in comparison to sleeping, running and most other activities. 

On the other hand, sleeping or smoking are quite well-defined activities, where there is little room 

for subjectivity. A prospect for future studies would be to take the most ambiguous or subjective 

activities and break them down into more defined activities, as specified above. Although, this would 

mean more challenges for collecting data, it could provide more detailed and accurate final results. 

Combining the data points used in this research with environmental stressors, measured with 

portable low-cost sensors, could provide detailed results of exposure and intake dose. Further 

research is needed to test and validate these approaches. 

As low-cost sensors become more widely used and individuals are able to gain access to more 

information about their living environment, it is crucial for researchers to provide adequate tools to 

assess and improve accuracy of activity classification. A promising step forward would be to reduce 

the input of individuals and increase the role of machine learning. This research shows a novel 

approach of using classification methods with data from low-cost portable environmental and 

activity sensors, to recognize specific activities without direct human input. 
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