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EXPOSURE

PM INTAKE DOSE

PM CONCENTRATIONS

« EXxposure to airborne particulate matter (PM) can be dependent
on a specific activity

* Aggregating this data according to specific activities can
provide individuals with detailed information

 They can more effectively reduce their exposure and intake
dose by curtailing their activities

How to obtain data about a Inaccurate and time consuming
specific activity at each moment?

Pen&paper? An app?

Why not try machine learning?
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Heart rate Activities + duration

Movement Temperature Transport
Humidity Conditions in room

Speed

« 97 participants were equipped with the two sensors and the
TADs (Time Activity Diaries) for 7 days and two seasons

« Manually recording their activities for each hour of the day

Cleaning the data

Using the data in three
classification models
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@ CleaningIN ® Playing.IN * Running.OUT ® SmokingIN # Sports.OUT
® CookingIN ® RestingIN * Sleep.IN ®  Sports.IN

« PCA shows very few patterns for
specific activities:
— Clustering of running in upper right

corner, positive association with
steps and movement

— Some clusters mostly indicating
frequent zero values (steps, speed)
« The average values do provide
some insight:

— High PM values for smoking,
cooking, cleaning

— Fast movement and high heart rate

PC2 (20.7% explained var.}

for running
— Lower temperatures for outdoor
activities
— Lower heart rate and movement for
sleeping
-I2 PC1 (35.4% 6 i ZI
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Classification

« Three classification algorithms were chosen, based on best practices
and recommendations.

Classifier Description

1Bk [26] Instance Based learner otherwise known as k-nearest neighbor
(KNN) classifier; selects value of k based on internal cross-validation.

J48 is a Java implementation of the C4.5 decision tree algorithm
developed in 1993 by Ross Quinlan [18]. It can be used for
J48 [27] classification and allows a high number of attributes. Deemed as
“machine learning workhorse”, ranked nr. 1 in the Top 10 Algorithms
in Data Mining [28].

Constructs a forest of decision trees in a randomized manner.

PR EMIFIrESLE 2] Developed by Leo Breiman in 2001 [30].
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Results & discussion #1

Classifier Corre_c_tly Kappa True_ . Fals_e_ Precision ROC area PRC area
classified Positive Positive

IBK 32.7% 0.2424 0.327 0.084 0.363 0.621 0.220

148 39.5% 0.3195 0.395 0.076 0.407 0.767 0.370

Random /3 14, 0.3601 0.431 0.071 0.432 0.807 0.444

Forest

All the used classifiers showed accuracy above 30%, with RandomForest
being the most accurate with 43.1%

As the labeled data was made from hourly labeled activities, this gives it
less resolution and more errors (some activities don'’t last an hour, and
most don’t last exactly a set number of full hours)

A future improvement would be to label data by minute, not by hour
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Results & discussion #2 B B

« All of the models showed the most misclassified instances with resting. This
could be the result of a vague definition of resting in comparison with sleeping,
running and most other activities.

« On the other hand, sleeping or smoking are quite well-defined activities where
there is little room for subjectivity.

« A prospect for future studies would be to take the most ambiguous or
subjective activities and break them down to more defined activities. Although,
this would impose greater challenges when collecting data, it could provide
more detailed final results.

IBk J48 RandomForest
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Conclusions

« Combining the data points used in this research with environmental
stressors, measured with portable low-cost sensors, could provide
detailed results of exposure and intake dose.

« As low-cost sensors become more widely used and individuals
are able to gain access to more information about their living
environment, it is crucial for researchers to provide adequate
tools to assess and improve accuracy. A promising step forward

would be to reduce the input of individuals and increase the role of
machine learning.
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Thank you for your attention!

If you have any questions/comments, you can find me at:

rok.novak@ijs.si
I RokNovakSci
¥ Rok Novak
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