Electrospray printing of graphene layers for chemiresistive gas sensors

Sergio Masa

Email: sergio.masa@csic.es

Spanish National Research Council

Institute for Physical and Information Technologies

Interreg Sudoe Nan@Sen-AQM

 7th International Electronic Conference on Sensors and Applications

 15 - 30 November 2020

 International Electronic Conference

 15 - 30 November 2020

CONTENT

1. Motivation

2. Nanosensors

- 2.1. Nanostructures
- 2.2. Graphene

3. Sensor preparation

- 3.1. Materials
- 3.2 Electrospray
- 3.2. Deposition pattern

4. Sensor characterization

- 4.1. Gas detection (NO₂, O₃, CO)
- 4.2 Humidity
- 4.3. UV irradiation

5. Conclusions and future work

1. MOTIVATION (I)

•

•

• Cost

• Size

Wireless Sensor_Networks (WSN)

Air Quality Monitoring (AQM) Ö H \$24.5° GTO 22 PM 1 СО 35 PM 2.5 ug/m3 \$23.5₽ 045% IN MARRIE MAN IN FALLS. I.S.

Low costLow powerHigh resolution (x, t)DistributedMassiveUbiquitous...

- Target NO₂, O₃
 - NO₂, O₃, CO, VOCs, ...
 - Materials, fabrication process, scale-up
- **Power** Operation temperature
 - Miniaturization, micro- & nanofabrication
 - PerformanceLow pollutant concentrations,
sensitivity, selectivity, response/recovery time
- Life-time
- Accuracy
- Stability
- Repeatability

09/11/2020

1. MOTIVATION (II)

Metal Oxide Semiconductor (MOS) sensors

MOS sensors are produced by means of **costly technologies** (e.g. silicon processing, MEMS) and require **high power consumption** due to the high working temperature (>300 °C).

2.1. NANOSTRUCTURES

Sensor based on nanostructured active layers (nanosensors)

2.2. GRAPHENE

Graphene materials (2D)

- **PG** has <u>high conductivity</u> but is <u>inert</u> (lack of defects, oxygen groups) and needs to be functionalized (polymers, metals, metal oxides), <u>costly non-scalable production</u>
- GO has <u>low conductivity</u> but is <u>very reactive</u> (multiple oxygen groups)
- rGO has intermediate properties between PG and GO, sustainable mass production

Resistive gas sensors

09/11/2020

3.1. SENSOR MATERIALS

Precursor suspension

rGO in isopropyl alcohol (0.1mg/ml)

rGO powder (E800, Abalonyx AS, Norway)

Sensor substrate

Polymer (PCB) with printed interdigitated electrodes (Cu)

09/11/2020

3.2. ELECTROSPRAY (I)

Sensors are prepared by **electrospray** of a rGO/IPA dispersion (0.1 mg/ml)

Parameters

- Needle inner/outer diameter 0.3 / 0.5 mm
 Distance needle-substrate 5 30 mm
 - **Distance needle-substrate** 5 30 f
 - Voltage

- 2 6 kV
- Feed flowrate3 10 μL/min
- **Deposition time**

5 - 20 min

Requirements

- **Stable dispersion** Short deposition time
- **Stable electrospray** *Optimal flowrate and voltage*
- Solvent evaporation Highly volatile solvent, large distance

•

•

•

3.2. ELECTROSPRAY (II)

<u>Electrospray regimes through increasing voltage:</u> <u>dripping, pulsed cone-jet, **continuous cone-jet**, tilted-jet and multi-jet .</u>

The liquid meniscus narrows and elongates under the action of the **surface tension** and the **electric field** force and at a critical voltage the **Taylor cone** is formed. With further increasing of the electric field, the cone becomes unstable and a very **thin jet** (small and thin compared with the capillary diameter) is emitted from the cone apex.

09/11/2020

3.3. DEPOSITION PATTERN

Circular spots of rather uniform deposits of rGO are obtained in stable cone-jet mode. The diameter of the spot increases with the increasing needle-substrate distance

Needle-substrate distance (mm)

Repeatability

characterization for gas detection

4. SENSOR CHARACTERIZATION

4.1. GAS DETECTION (NO_2 , O_3 , CO)

- P-type semiconductor
- Long recovery times
- Sensitivity $O_3 > NO_2$
- No detection of CO (<5ppm)

09/11/2020

4.2. HUMIDITY

4.3. UV IRRADIATION

UV-LED

• $\lambda_{peak} = 356 \text{ nm}$

UV irradiation → Active gas desorption

5. CONCLUSIONS (I)

Sensors based on electrospray printing of <u>rGO</u> layers have been characterised for low level detection of NO₂, O₃ (< 300 ppb) and CO (< 5 ppm):

- Detection limits (LOD) for O₃ and NO₂ are not suficient for air quality monitoring
- Not CO sensitive up to 5 ppm levels
- Sensors based on rGO have very long recovery time but it decreases with increasing air humidity
- UV irradiation speeds-up gas desorption at room temperature, reducing recovery time

5. CONCLUSIONS (II)

Effects of electrospray parameters

- Surface area of rGO deposit increases with increasing needle-substrate distance
- Homogeneous deposits are obtained in a stable cone-jet regime and they are reproducible
- Voltage and flowrate determine the spatial distribution of rGO over the substrate
- **Deposition pattern** is very **sensitive to the applied voltage**. Small desviations from the voltage at stable cone-jet mode lead to drastic changes in the rGO spatial distribution

5. FUTURE WORK

- Surfactants or dispersants to optimize the long-term dispersion of rGO
- Effect of **rGO type** (C/O) on the sensor's detection sensitivity to air pollutants (NO₂, O₃, CO)
- **Doping rGO** for CO detection
- Effect of UV light source parameters (wavelength and intesity) on:
 - P/N-type performance of rGO
 - Sensitivity of rGO
 - Recovery time

