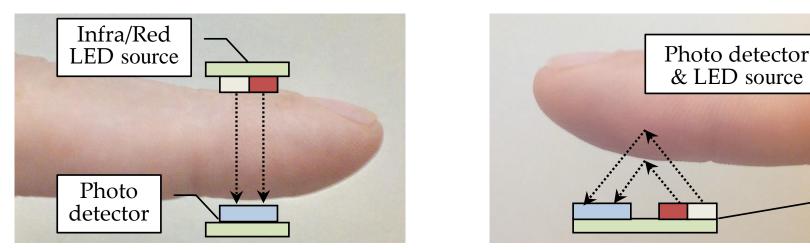
## Comparative Measurement of the PPG Signal on Different Human Body Positions by Sensors Working in Reflection and Transmission Modes



#### Jiří PŘIBIL, Anna PŘIBILOVÁ, Ivan FROLLO

Institute of Measurement Science, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia.




## **Table of contents:**

- 1. Introduction
- 2. Description of basic principles and types of PPG sensors
- 3. Processing and analysis of the PPG signal:
  - Analysis of signal properties of the PPG wave
  - Determination of heart rate values from the PPG signal
- 4. Used instrumentation and experimental arrangement
- 5. Discussion of obtained results and conclusion

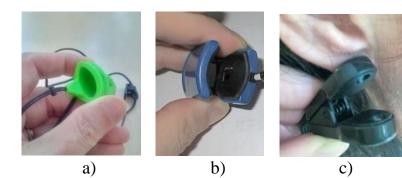
# **Basic Principle of PPG Sensors Function**

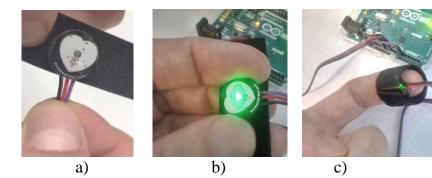
The optical sensors for measurement of the PPG signal can work in transmission or reflection modes:

- Generally, a PPG sensor consists of two parts: a transmitter (light source) and a receiver (photo detector),
- The arrangement of the light source(s) and a photo detector depends on the operation mode.



Basic principle of PPG sensors working in: transmission (*on the left*), reflection (*on the right*) modes.


# **Different Realizations of PPG Sensors**

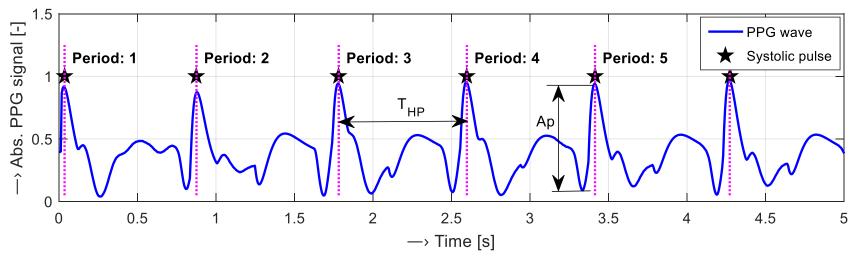

### **PPG sensors for measuring in a transmission mode have:**

the LED source and the photo detector placed on opposite sides of the measured human tissue (on a finger or an ear lobe).

## **PPG sensors for measuring in a reflection mode have:**

the LED source and the photo detector measuring the intensity of the reflected light placed side by side on the same body surface.



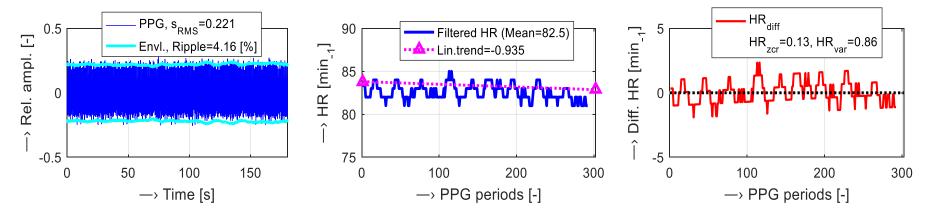



Examples of a transmission PPG sensor realization as: (a) rubber finger ring, (b) plastic finger clip, (c) plastic ear clip. Examples of a reflection PPG sensor realization: (a) its front side with one LED and a photo detector, (b) in its functional state, (c) fixed on an index finger by an elastic ribbon.

# **Basic PPG Signal Processing and Analysis**

### **Basic analysis of PPG signal properties consists of:**

- determination of energetic, temporal, and statistical parameters for description of PPG signal properties as:
  - PPG signal energy by root-mean-square values ( $S_{RMS}$ ),
  - signal energy using absolute value of the mean of the Teager–Kaiser energy operator  $O_{\text{TK}}$  (En<sub>TK</sub>),
  - signal ripple as the relative amplitude perturbation from the detected peak amplitudes  $(A_p)$  expressed in percentage.




An example of the PPG signal analysis: a 5-s frame of the absolute PPG wave with localized systolic heart peaks of A<sub>p</sub> amplitudes and determined heart pulse periods T<sub>HP</sub>.
4 PŘIBIL et al. (2020): Comparative Measurement of the PPG Signal on Different Positions...

# **Calculation of HR Parameters from PPG Signal**

#### The second phase of PPG signal processing:

- HR determination from the PPG wave from  $T_{\rm HP}$ ; smoothing the output sequence by a 3-point median filter and a linear trend (LT) calculation.
- mean value and LT removal to obtain HR<sub>DIFF</sub> values, used for calculation of zero-crossings mean (HR<sub>ZCR</sub>) and variance (HR<sub>VAR</sub>).



Relative PPG signal and its envelopes with the determined S<sub>RMS</sub> and Ripple (*left*), the filtered HR sequence with calculated LT (*middle*), HR values after mean value and LT removal with a zero-crossings mean and a variance (*right*).

# **Instrumentation for PPG Signal Recording**

## For real-time recording of the PPG signal were used:

- 1. **PPG sensors working in a transmission mode:** 
  - optical sensor HRM-2511E (by Kyoto Electronic Co.) in the form of a rubber <u>finger ring</u>,
  - plastic <u>ear clip</u> primarily used for heart rate beats monitoring during the sporting on the Kettler Consul Home Bike device,
  - both connected to the analog interface Easy Pulse (*by Embedded Lab*) for pre-amplification and filtering of the PPG signal.
- 2. Reflective optical PPG sensor:
  - PulseSensor Amped PRODUCT (*Adafruit 1093*) with integrated basic analog interface, fixed by an elastic ribbon enabling measurement on different body places (fingers, wrists, etc.)
- 3. Common for all three tested realizations of a PPG sensor:
  - **battery-based power supply of 5 V** (*AlzaPower source 2000*),
  - mixer device Behringer XENYX Q802 for PPG signal digitization via the USB interface connected to the laptop PC.

# **Description of Performed Experiments**

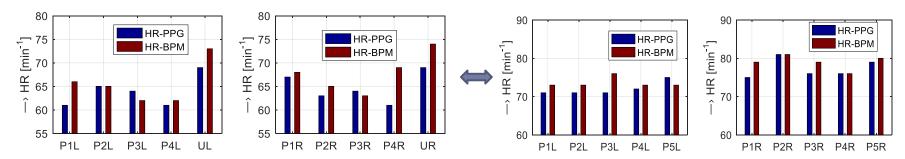
**Two PPG signal databases were collected during experiments:** 

- **1) DB**<sub>1</sub> (records by sensors working in a transmission mode)
  - PPG signal sensed from four fingers on both hands ("P1L/R,..,P4L/R") and both ear lobes ("UL/R")



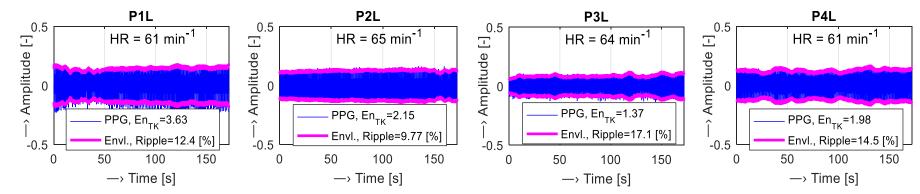
5x2=10 of 180-sec records for each tested person.

- 2) DB<sub>2</sub> (records by sensors working in a reflection mode)
  - PPG signal pickup from five fingers of left and right hand ("P1L/R,..,P5L/R")

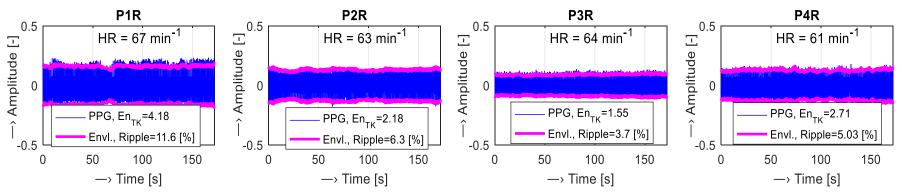

10 records with total duration of 30 min per person.

- Six healthy volunteer persons (three males and three females in the age from 29 to 58) took part in our experiments.
- All collected records were processed to obtain PPG signal properties (S<sub>RMS</sub>, En<sub>TK</sub>, and Ripple) and HR values including their zero-crossings and variance statistical parameters (HR<sub>ZCR</sub>, HR<sub>VAR</sub>).

# **Experimental and Recording Conditions**


#### For all measurements holds that:

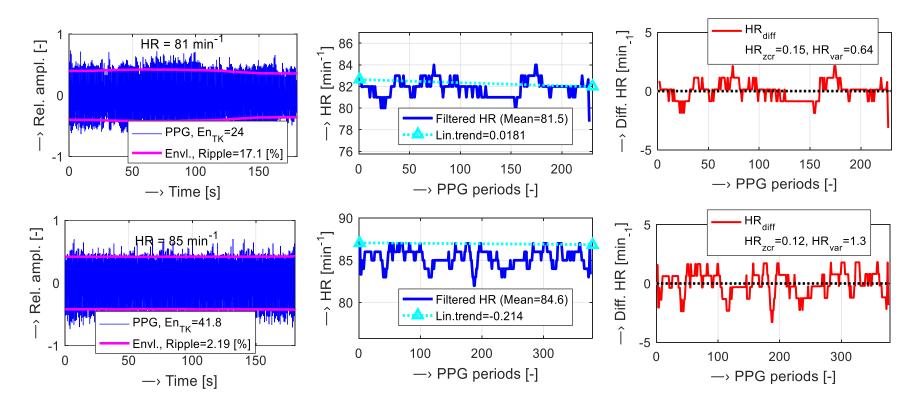
- → Tested persons were always sitting on a chair at a table without any stimuli in normal interior conditions.
- → The mean HR values determined from the PPG signals were compared with the ones measured in parallel by the BPM device *Microlife BP A150-30 AFIB*.
- → The BPM's cuff was put on the opposite arm than the PPG signal was sensed to prevent any influence of an inflated pressure cuff of the BPM on a tested person's blood system.




Comparison of mean HR values from PPG signals and measured by a BPM device: from four fingers of L/R hands and both ear lobes by FRS and ECS sensors (*left two graphs*), from five fingers of L/R hands using the *REFS* sensor (*right two graphs*); male person JP.

## **Comparison of PPG Signals from four Fingers**



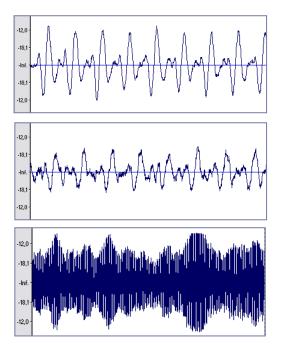

PPG waves with envelopes of the signals sensed from four fingers together with En<sub>TK</sub>, Ripple, and mean HR values; the *FRS* sensor placed on the male JP left hand.



PPG waves with envelopes of the signals sensed from four fingers together with En<sub>TK</sub>, Ripple, and mean HR values; the *FRS* sensor placed on the male JP right hand.

9 PŘIBIL et al. (2020): Comparative Measurement of the PPG Signal on Different Positions...

## **Comparison of PPG Signals from Ear Lobes**




The relative PPG signal and its envelopes with the En<sub>TK</sub> and Ripple values (*left graphs*), the filtered HR sequence with calculated LT (*middle graphs*), the HR values after mean value and LT removal with a zero-crossings mean and a variance (*right graphs*); *FRS* sensor placed on the female AP left (*upper set*) and right (*bottom set*) ear lobes.

## **Testing PPG Signal from a Wrist**



Documentary photo of the *REFS* PPG sensor placed on the left wrist

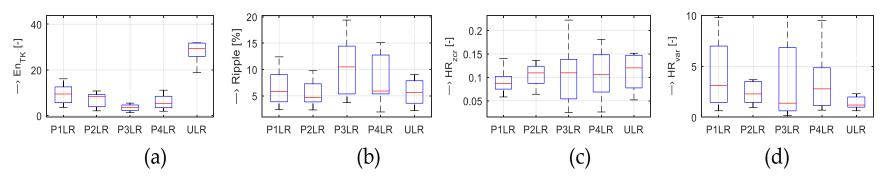


PPG wave sensed on a wrist: for correct location of a sensor on a vein (*upper*), disturbed PPF signal (*middle*); signal with too high ripple (*bottom*).

#### Main disadvantage:

 quality of the sensed PPG signal depends on the placement of the source LED and PHD element directly on the vein.

## **Comparison of Partial Results**


**PPG signal parameters and HR features for fingers (P1-P4) and an ear lobe (U);** the right hand of the female person AP, used transmission sensors (*FRS/ECS*).

| Parameter             | PI <sub>FRS</sub> | P2 <sub>FRS</sub> | P3 <sub>FRS</sub> | P4 <sub>FRS</sub> | U <sub>ECS</sub> |
|-----------------------|-------------------|-------------------|-------------------|-------------------|------------------|
| S <sub>RMS</sub> [-]  | 0.24              | 0.22              | 0.14              | 0.19              | 0.40             |
| En <sub>тк</sub> [-]  | 9.49              | 8.50              | 3.60              | 6.69              | 24.0             |
| Ripple [%]            | 11.8              | 9.11              | 10.0              | 11.0              | 6.31             |
| HR <sub>ZCR</sub> [-] | 0.058             | 0.065             | 0.026             | 0.112             | 0.123            |
| HR <sub>VAR</sub> [-] | 0.63              | 3.30              | 1.75              | 3.48              | 1.28             |

**PPG signal parameters and HR features for five fingers (P1-P5);** the right hand of the female person AP, used reflection sensor (*REFS*).


| Parameter             | PI <sub>REFS</sub> | P2 <sub>REFS</sub> | P3 <sub>REFS</sub> | P4 <sub>REFS</sub> | P5 <sub>REFS</sub> |
|-----------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| S <sub>RMS</sub> [-]  | 0.20               | 0.21               | 0.22               | 0.23               | 0.27               |
| Еп <sub>тк</sub> [-]  | 6.11               | 7.16               | 7.64               | 8.09               | 11.7               |
| Ripple [%]            | 18.5               | 18.3               | 7.84               | 3.40               | 5.81               |
| HR <sub>ZCR</sub> [-] | 0.091              | 0.224              | 0.119              | 0.129              | 0.126              |
| HR <sub>VAR</sub> [-] | 0.5 I              | 0.32               | 0.57               | 0.61               | 1.07               |

## **Summary Comparison of PPG Signal Features**



Box-plot comparison of PPG signal properties and HR statistical parameters: (a) En<sub>TK</sub> energy values; (b) Ripple values; (c) HR<sub>ZCR</sub> values; (d) HR<sub>VAR</sub> values;

FRS and ECS sensors on four fingers of both hands and both ear lobes, all tested persons.



Box-plot comparison of PPG signal properties and HR statistical parameters: (a) En<sub>TK</sub> energy values; (b) Ripple values; (c) HR<sub>ZCR</sub> values; (d) HR<sub>VAR</sub> values;

**REFS** sensor on five fingers of both hands, all tested persons.

## **Discussion of Obtained Results I.**

#### 1. Measurements using the *FRS* transmission PPG sensor

- there exist differences in the signal energy expressed by En<sub>TK</sub> and S<sub>RMS</sub> parameters, and the signal short-time stability represented by the envelope ripple:
- a) PPG signal from the little finger has the greatest energy and approximately average ripple,
- b) the smallest energy and the highest ripple of the PPG signal is picked up from the thickest middle finger,
- c) relatively good signal energy and approximately average ripple are obtained from the index finger .
- × PPG signals from thumbs cannot be sensed due to their too thick tissue.
- ✓ Essential differences were not detected according to the type of hand (left vs. right) or gender (male vs. female) of a tested person.

## **Discussion of Obtained Results II.**

- 2. Measurements using *ECS* type of a transmission sensor
  - a) Signal energy from an ear lobe is higher (a lobe is thinner than a finger):
    - ⇒ PPG wave has higher ripple and generally worse signal properties,
    - ⇒ HR values determined from the PPG signal and the reference BPM device have the greatest differences in comparison with the results obtained from fingers.
  - b) This realization of a PPG sensor seems not very suitable for longer precise measurement:
    - ⇒ tested persons have often a problem to rest without any movement of a head.
- × Worse PPG signal properties are probably the result of a small number of weak capillaries in an ear lobe which causes weaker blood flow detection.

## **Discussion of Obtained Results III.**

- 3. Measurements using a reflection type of a PPG sensor
  - a) Signal energy and PPG wave properties depend on the size of a finger surface:
    - ⇒ the best signal properties (*higher energy and smaller ripple*) were observed by sensing from the thumbs.
  - b) The differences in stability and precision between HR values determined from the PPG and the BPM are relatively small:

#### ⇒ excluding the middle finger PPG signal.

- × PPG signals from wrists cannot be successfully sensed due to too great dependence on the right localization of a measurement position of the PPG sensor directly on the vein.
- ✓ No important differences were observed between signals taken from left/right hands or male/female tested persons.

# Conclusion

- 1. Comparison of *FRS/ECS* realizations of the PPG sensors working in a transmission mode shows:
  - ✓ PPG wave taken from the finger ring type is more stable and cleaner than that from the ear lobe type.
  - ✓ PPG signals from fingers demonstrate dependence of the energy and ripple on the tissue volume without relevant differences between the left and right hand.
- 2. Analysis of PPG signals picked-up by a sensor working on a reflection principle shows:
  - ✓ dependence on the size of a finger surface,
  - × but no dependence on the tissue volume.

#### **Future plans:**

- to test the *REFS* PPG sensor in more detail,
- to modify the *REFS* sensor enabling measurement in the low magnetic field environment with RF pulses disturbance.

**PŘIBIL et al. (2020):** Comparative Measurement of the PPG Signal on Different Positions...

#### **Acknowledgement**

The work has supported by:

- the Grant Agency of the Slovak Academy of Sciences (VEGA 2/0125/19 and 2/0001/17).
- **The COST Action CA16116.**

# Thank you for your attention !