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Abstract: Offshore oil and gas platforms present a harsh environment for their installed 

infrastructure, with pipelines that are both subjected to a corrosive atmosphere and transport 

aggressive chemicals being the most critical. These conditions have prompted the industry to 

substitute metallic pipelines for composite counterparts, often made of fiber reinforced plastics 

assembled with bonded joints. Various technologies have emerged in the recent years to assess the 

health of these composite pipelines. In particular, robust speckle metrology techniques such as 

shearography, although not capable of long-term monitoring, have produced very satisfactory 

results. However, these inspection techniques require specialized equipment and trained personnel 

to be flown to offshore platforms, which can incur in non-trivial inspection costs. In this paper we 

propose and demonstrate a robust and cost-effective approach to monitor pipelines bonded joints 

during assembly and operation using Fiber Bragg Grating (FBG) sensors embedded into the joints’ 

adhesive layer. This approach allows for informed decisions on when to perform targeted in-depth 

inspections (e.g., with shearography) based on both real-time and long-term feedback of the FBG 

sensors data, resulting on lower monitoring costs, a severe increase on monitoring uptime (up to 

full uptime), and increased operational security. 
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1. Introduction 

In applications where crucial system components are frequently or constantly in contact with 

corrosive substances, such as in the oil and gas industry, usage of engineering plastics and composite 

materials has grown exponentially, due to low weight-to-strength ratio and high corrosion resistance 

inherent to these materials. Metallic pipelines, for example, are being replaced by adhesive bonded 

fiber reinforced plastic (FRP) pipelines generating a demand for FRPs inspection techniques. Several 

NDT techniques have been adapted or developed to meet this demand, including thermography, 

ultrasonography, radiography, holography and computed tomography [1]. In previous publications 

we have explored the use of a robust speckle pattern shearing interferometry technique, shearography, 

with success for assessing the health of bonded joints in FRP pipelines [2–4]. The downside of these 

techniques is that access to the inspection site and components to be inspect is often difficult, as is for 
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pipelines that are buried or installed in confined spaces on oil platforms. Furthermore, specialized 

equipment and trained personnel need to be flown to offshore platforms, which can incur in non-

trivial inspection costs and reduce monitoring uptime. 

Fiber optic sensors, and in particular Fiber Bragg Gratings (FBGs) are increasingly popular for 

structural health monitoring applications due to advantageous characteristics that are inherent to 

fiber sensors, such as reduced size (typical fiber diameter of 125 µm), immunity to electromagnetic 

interference and high multiplexing capability [5]. While embedding sensors in plastics and composite 

materials has been a highly active field of study in recent years, the use of these techniques applied 

to tubular bonded joints is a very recent topic and remain a significant technical challenge. [6–8]. 

In this work we explore the use of FBGs embedded into the adhesive layer of tubular adhesive 

bonded joints for long-term structural health monitoring and defect detection throughout the entire 

lifecycle of the pipeline. This was achieved by embedding several sensing fibers in bonded joints 

between industrial chlorinated polyvinylchloride (CPVC) pipes to measure axial strain inside the 

adhesive and looking for anomalies in the strain fields that indicate the presence of defects. 

2. Materials and Methods 

2.1. Instrumentation Setup 

The standard FBG sensor consists of a short section of optical fiber with a periodically modulated 

refractive index. When broadband light is launched into the fiber, the FBG structure couples the 

forward-propagating light to a backwards core mode, creating a narrowband reflection response. The 

peak wavelength of the reflected signal, 𝜆𝐵 (Bragg wavelength) is sensitive to mechanical strain and 

temperature experienced by the fiber, as shown in Equation (1), where 𝜀 is the mechanical strain 

along the axis of the fiber, 𝑇 temperature, and 𝑘𝜀 and 𝑘𝑇 are the strain and temperature sensitivity 

respectively (typically 𝑘𝜀 = 0.769 and 𝑘𝑇 = 7.64 × 10-6 K−1). Thus, the FBG can be used as a strain 

sensor by monitoring the shift of 𝜆𝐵 in response to mechanical loads [6,7]. 

Δ𝜆𝐵/𝜆𝐵 = 𝑘𝜀Δ𝜀 + 𝑘𝑇Δ𝑇 (1) 

In this work we have employed sensing fibers with 3 FBG strain sensors along their length. 

Precautions in the form of a polyimide protective coating and a 0.9 mm diameter Teflon loose tube 

were used to prevent fiber breakage during handling, embedding, and testing. A schematic drawing 

of the used sensing fibers can be seen in Figure 1. 

 

Figure 1. Sensing fiber with 3 FBGs, loose tube and FC/APC connector. Dimensions in millimeters. 

Distinct nominal 𝜆𝐵 were used for each FBG, along with sufficient spectral spacing (≥ 5 nm) to 

easily distinguish between sensors and avoid signal overlapping from uneven loading. Furthermore, 

each embedded fiber has a unique combination of nominal wavelengths, so each sensing location 

along the perimeter of a bonded joint is uniquely and readily identifiable. 

2.2. Assembly of Test Specimens 

The test specimens were assembled with 4” (100 mm) nominal diameter schedule 80 CPVC pipe 

and fittings. One end of the specimen is sealed with and endcap, while the opposing end is fitted 

with a heavy-duty CPVC flange and sealed with a 1040 steel blind flange with a central 1/4” NPT 

thread. Both the endcap and CPVC flange were solvent welded to straight pipe sections, which were 

then adhesive-bonded to a sleeve using bi-component methyl-methacrylate adhesive. 

To accommodate the sensing fibers and allow for bonding the straight pipe sections to the sleeve, 

the length of pipe to be inserted into the sleeve (~58 mm) was machined to reduce its diameter by  
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3 mm. Figure 2 is a picture of a fully assembled test specimen with embedded sensors. Note that in 

this configuration FBG1 (Figure 1) will be positioned the deepest into the sleeve, while FBG3 is 

positioned closer to the outer edge of the sleeve (where the fiber exits the adhesive layer), with  

FBG2 in between. 

 

Figure 2. Fully assembled test specimen ready for hydrostatic testing. Yellow arrows indicate the 

points were the test specimen is supported by the fixtures below it. 

Breakage of the sensing fibers while assembling the bonded joints was avoided by first pre-

positioning the fiber with adhesive tape (applied to the loose tube), securing the tip of the fiber to the 

wall of pipe with a droplet of cyanoacrylate adhesive, and then applying a uniform layer of the 

methyl-methacrylate bi-component adhesive directly along the length of the fiber before applying it 

to the machined pipe section and inner wall of the sleeve. Finally, the instrumented pipe section and 

sleeve are carefully brought together, avoiding rotation along their long axis as to not misalign the 

fibers. Three test specimens, that will be referred as S1, S2 and S3, were assembled. Specimens S2 and 

S3 are instrumented with 12 sensing fibers in the adhesive layer (~43.6 mm of circumferential 

separation between fibers) aligned with the pipe’s long axis, providing 36 strain sensing points, 

whereas S1 has 11 fibers (~47.6 mm circumferential spacing) due to a defective fiber. 

3. Results and Discussion 

Specimen S1 was assembled with a significant lack of adhesive to create numerous large voids, 

while S2 was prepared to be as structurally sound as possible. S3 contains planned defects created by 

embedding pieces of Teflon sheet with aluminum tape (to increase detectability by tomography). The 

instrumented joints were then submitted to a computed tomography scan for control purposes, the 

results are depicted in Figure 3 along with a picture of the Teflon pieces embedded into S3. 

    

Figure 3. (a–c): Computed tomography images of the instrumented bonded joints from S1, S2 and S3, 

respectively. Red arrows indicate the position of the artificial inclusions (d) in S3. 

From Figure 3a extensive lack-of-adhesive defects (darker areas) can be seen in S1, some porosity 

without major voids in S2 (Figure 3b), and some porosity along the planned defects (indicated by the 

red arrows) in S3 (Figure 3c). The embedded defects shown in Figure 3d have the approximate 

dimensions of 20 mm diameter for the circle, 20 mm sides for the square and 20 mm by 70 mm for 

the rectangular Teflon sheet. For a more complete evaluation of the instrumentation setup defect 

detection capacity the circle and large rectangle were positioned on top of FBG sensors, while the 

(a) (b) (c) (d) 
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square was placed in the spacing between fibers. Three experiments were conducted with the 

embedded FBG sensors to assess their suitability for monitoring the health of the bonded joints 

during all stages of the pipeline lifecycle: (a) adhesive curing strain test (joint assembly), (b) flexural 

strain detection test (pipeline assembly), and (c) hydrostatic test (operation). 

Adhesive curing strain test was realized by interrogating (sm125 Optical Sensing Interrogator, 1 

pm resolution—Micron Optics) all FBGs before and after assembling the bonded joints and 

computing the strain difference (Δ𝜀) between datasets. Figure 4 contains the Δ𝜀 maps (surface and 

color maps with bilinear interpolation, note that in the graphics the axis start at zero and as such 

FBG0 in the graph = FBG1 in Figure 1 and so on) of the adhesive cure strain for S1 and S2. In a 

structurally sound joint the strain map is expected to be entirely negative (compressive strain) as the 

adhesive shrinks when cured [9]. This is visible in the Δ𝜀  maps for S2, along with great 

circumferential symmetry (Optical Fiber axis) and a higher strain magnitude towards the outer edge 

of the sleeve. On the other hand, S1 exhibits significant strain fluctuations due to the severe lack of 

adhesive, no circumferential symmetry and FBGs under tensile strain. Therefore, it is evident that the 

embedded sensors can differentiate between a sound joint and one with moderate to severe lack  

of adhesive. 

 

 

Figure 4. Adhesive cure strain for S1 (top), S2 (bottom). Left: surface plots; Right: color plots. 

When assembling pipelines, forcefully compensating for misalignments between pipe sections 

to be joined can introduce axial and flexural loads, leading to premature failures due to increased 

strain levels. As indicated by the yellow arrows in Figure 2, when ready for hydrostatic testing the 

test specimens are supported in 3 points: the endcap and two points near the sleeve. The two-point 

support at both sides of the sleeve results in a slight flexural load with a maximum at the midpoint 

of the sleeve. In this configuration, by comparing strain maps obtained before and after rotating the 

test specimen along the long axis, the load redistribution among sensing fiber simulates the effect of 

introducing a slight flexural load. The strain difference (Δ𝜀) map for a “virtual” load, obtained by 

rotating S2 by 90° is shown in Figure 5. As can be seen, the strain distribution is consistent with 

uniaxial flexural loading, the FBGs are also shown to be very sensitive, being able to detect very slight 

flexural loads, undoubtedly adequate for monitoring the pipeline assembly process. 
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Figure 5. Surface and color plots of the Δ𝜀 map obtained by rotating S2 by 90° along the long axis. 

Finally, hydrostatic testing was conducted to evaluate the defect detection and monitoring 

effectiveness of the embedded sensors when the pipeline is pressurized during operation. The test 

specimens were pressurized up to 7 bar (0.7 MPa) manometric pressure using a hydraulic hand 

pump. Figure 6 contains strain maps obtained by computing the strain difference (Δ𝜀) detected by all 

FBG sensors at the 7 bar internal pressure in relation to the unpressurized (zero manometric pressure) 

reference strain values. As expected for this type of test, the Δ𝜀 map for S2 (Figure 6a) shows purely 

tensile strain, as the sealed pipe is forced to elongate due to the internal pressure load. It is noteworthy 

that strain levels are reasonably uniform (mean strain = 79.5 𝜇𝜀, standard deviation = 13.4 𝜇𝜀), with 

the fluctuations most likely caused by porosity (observed in Figure 3b) near the FBGs. 

 

 

Figure 6. (a) and (b): Hydrostatic test Δ𝜀 map surface plots for S2 and S3. (c): Color plot of the Δ𝜀 

map in (b), dashed black lines mark the position of intentionally embedded defects. (d): Color plot of 

the Δ𝜀 map in (a) with the color bar rescaled to match with (c). Internal pressure = 7 bar. 

The strain map for S3 in its turn (Figure 6b,c) shows very distinct anomalies: a dip into negative 

strain levels is observed coinciding with the position of the circular embedded defect (elongated in 

Figure 6c due to the map aspect ratio), and a noticeable strain redistribution is observed in the region 

(a) (b) 

(c) (d) 
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containing the larger rectangular defect. The smaller square defect, which was purposefully 

positioned away from the FBG sensors, unfortunately is not observable it did not cause a large 

enough disturbance in the strain field to be detected by surrounding FBGs. If the color bar for the 

strain map of S2 is rescaled to match that of S3 (Figure 6d), the difference between the strain map of 

a sound bonded joint and one with embedded defects becomes very evident. When compared to the 

strain concentration and redistribution (including areas under compression) caused by the presence 

of defects (Figure 6c), the strain fluctuations observed before in Figure 6a are very small, rendering 

the rescaled strain colormap extremely smooth. This comparison clearly shows that the embedded 

sensors can detect and monitor the presence of defects during the pipeline operation. 

4. Conclusions 

A sensing setup to detect and monitor defects in bonded joints between pipelines by measuring 

axial strain in the adhesive layer with embedded FBG sensors was demonstrated. This setup was 

shown to be adequate to monitor the assembly of the joints, assembly of the pipelines, and the 

pipeline operation, effectively covering all stages of the pipeline lifecycle. Although further studies 

are needed before practical field measurements can be realized, for example the developing strategies 

for compensating temperature effects on the FBG sensors and determining the optimal sensor density 

(fibers per joint) to ensure defects of critical dimensions do not remain undetected, the achieved 

results of this work are very promising and can find ample use for monitoring plastic and composite 

pipelines that make use of adhesive bonded joints. 
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