

A sensor data-based approach for the definition of conditions taxonomies for a hydraulic pump

Caroline König (1,2) Carlos Gil Buigues (1,2)

- Department of Computer Science, Universitat Politècnica de Catalunya, UPC BarcelonaTech, Spain
- 2. ISA DATA S.L, 08970 San Joan Despi, Barcelona, Spain

OUTLINE

- 1. Introduction
 - 1. Core Concepts
 - 2. Cavitation
- 2. Experimental Bench
- 3. Data ingestion
- 4. Measurements
- 5. Exploratory data analisys PCA
- 6. Results
- 7. Conclusions

INTRODUCTION – CORE CONCEPTS

- 1. Internet of Things
- 2. Machine Learning
- 3. Condition monitoring
- 4. Sensoring
- 5. Real-Time Data

INTRODUCTION - CAVITATION

 v^{\dagger} T_B

EXPERIMENTAL BENCH

		Outlet valve			
		0%	20%	50%	80%
	0%	NO1/NO2	OV1	OV2	OV3
Inlet valve	20%	IV1	IO11	IO12	IO13
	50%	IV2	IO21	IO22	IO23
	80%	IV3	IO31	IO32	IO33

- 1. Closed-loop circuit
- 2. Sensors
 - 1. Pressure
 - 2. Flow
 - 3. Vibration
 - 4. Temperature
 - 5. Consumption
- 3. Valves
- 4. Experiment

Table 1. Description of sensor	s.
--------------------------------	----

Sensor tag	Model	Range	Measured variable	Unit
P2	Walfront 1PC G3/8 0-2 BAR	0-2 bar	Outlet pressure	bar
F1	FS300A	1-60L/Min	Flow rate	L/s
A1	ADXL335	L/s	One axe vibration	%
NTC1	MF52B NTC	200°C	Pump cage temperature	°C
PC1	SZT 15-CH-10	0-10A	Pump power consumption	А

DATA INGESTION

• Experimental bench and sensors

PLC

- PLC
- IoT Gateway
 - Node Red
- Cloud

EXPERIMENTAL

BENCH

DATA INGESTION – NODE RED

- Comunication with PLC
- Selection of registers
- Transform calculation
- Signals calibration
- Data formatter
- Data collector

MEASUREMENTS

MEASUREMENTS

MEASUREMENTS

EXPLORATORY DATA ANALISYS

- 1. Validation of data
- 2. Blockage states
- 3. 12-dimensional data
- 4. PCA

RESULTS - TOTAL

Х

RESULTS – SOFT BLOCKAGE

Х	

	Outlet valve				
		0%	20%	50%	80%
Inlet valve	0%	NO1/NO2	OV1	OV2	OV3
	20%	IVI	IO11	IO12	IO13
	50%	IV2	IO21	IO22	IO23
	80%	IV3	IO31	IO32	IO33

RESULTS - MEDIUM BLOCKAGE

Х

	Outlet valve				
		0%	20%	50%	80%
Inlet valve	0% (NO	1/NO2	OV1	OV2	OV3
	20%	IV1	IO11	IO12	IO13
	50%	IV2	IO21	IO22	IO23
	80%	IV3	IO31	IO32	IO33

RESULTS – HEAVY BLOCKAGE

х

	Outlet valve				
		0%	20%	50%	80%
	0%	NO1/NO2	OV1	OV2	OV3
Inlet valve	20%	IV1	IO11	IO12	1013
	50%	IV2	IO21	IO22	IO23
	80%	IV3	IO31	IO32	IO33

CONCLUSIONS

- Dataset of different blockage states
- Data have been enough accurate to show results despite the use of
 - Cost-effective sensors
 - Open-source software (node-RED)
 - Slow sampling frequency
- Differences among blockage states have been identified with PCA
- Future research on a condition monitoring system.
 - Training of a supervised learning model for the detection of different blockage states.

Thank you for your attention !

Caroline König (1,2) Carlos Gil Buigues (1,2)

- Department of Computer Science, Universitat Politècnica de Catalunya, UPC BarcelonaTech, Spain
- 2. ISA DATA S.L, 08970 San Joan Despi, Barcelona, Spain