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Abstract: With the increased population in urban areas worldwide, the security of water supply is 

gaining in importance. Water scarcity accelerated by climate change poses additional stress to water 

supply infrastructures. Water consumption data transmitted by smart water meters form the 

foundation of advanced data analysis, such as water end-use classification, with which the resilience 

of water supply can be improved. Especially with large amounts of high-resolution data, the 

accurate categorization of data from smart water meters into different end-uses such as toilets, 

showers or dishwashers is challenging and cannot be performed by humans. To this end, machine-

learning (ML) approaches provide several benefits, such as real-time capability, scalability and 

generalizability. State-of-the-art methods to identify residential water end-uses include both 

unsupervised methods and supervised approaches. However, a comprehensive comparison of 

unsupervised and supervised techniques is still missing. In this study, we are aiming at a 

quantitative evaluation of various ML techniques for water end-use classification. Furthermore, we 

focus on deriving general implications on the setting and conduction of ML-based experiments for 

water end-use classification. For these purposes, a stochastic water consumption simulation tool 

with high capability to model the real-world water consumption pattern is applied to generate 

residential data. Subsequently, unsupervised clustering methods, such as dynamic time warping, 

k-means, DBSCAN, OPTICS and Hough transform, are compared to supervised methods based on 

SVM. The quantitative results demonstrate that supervised approaches are capable to classify 

common residential end-uses (toilet, shower, faucet, dishwasher, washing machine, bathtub and 

mixed water-uses) with accuracies up to 0.99, whereas unsupervised methods fail to detect those 

consumption categories. The major implications drawn from the quantitative results are two-fold: 

clustering techniques alone are not suitable to separate end-use categories fully automatically. 

Hence, accurate labels are essential for the end-use classification of water events, where 

crowdsourcing and citizen science approaches pose feasible solutions for this purpose. 
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1. Introduction 

In recent years, climate change and population growth have exacerbated water scarcity and 

accelerated the vulnerability of water supply systems. A comprehensive and detailed understanding 

of water demand as well as water end-uses will improve the resilience of these systems. With the 

water consumption data generated and transmitted by smart water meters, advanced analysis of 

water demand using data-driven approaches is facilitated. In particular, the categorization of water 

use events into residential end-uses like washing machine, faucet or toilet permits a detailed 

investigation of the impact of different end-uses as well as the inhabitants on the overall demand. 

With the recent advances in artificial intelligence, categorization of residential water end-use can be 
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resolved as classification problem using Machine Learning (ML) techniques, thus having inherent 

real-time capability, scalability and generalizability. On a basic level, ML techniques can be 

subdivided into supervised and unsupervised approaches. The former directly perform a 

categorization/classification of data with given categories. Consequently, training data with labels 

annotating the samples’ categories are necessary. The latter, search for groups of similar data points 

in the dataset in the absence of labels.  

Both unsupervised and supervised approaches are widely applied in studies on end-use 

classifications of water use events. For example, Pastor-Jabaloyes et al. [1] proposed an unsupervised 

approach formulating a Partition Around Medoids clustering method using Gower distance as a 

similarity measure in the feature space, which is spanned by the volume and the average flow rate of 

the water use events. A clustering algorithm based on Dynamic Time Warping (DTW) as the 

similarity measure between events is described by Nguyen et al. [2]. This algorithm was refined to a 

hybrid method comprising k-medoids clustering, DTW and an swarm-intelligence-based global 

optimization, i.e. Artificial Bee Colony algorithm. Later, this approach is extended with a hybrid 

method consisting of Self-Organizing Maps and a k-means algorithm in the subsequent publications 

[3, 4]. Most supervised approaches are based on Hidden Markov Models and a subsequent 

optimization [5-16], but Artificial Neural Networks [9-13], Decision Trees [14] and Multi-category 

Robust Linear Programming [17] are used as well. Support Vector Machines (SVMs) were employed 

by Vitter et al. [18] to categorize water events using water consumption data and coincident electricity 

data. Furthermore, Carranza et al. [19] identify residential water end-uses in data measured by 

precision water meters equipped with pulse emitters using SVMs. 

Both supervised and unsupervised approaches proposed in the literature demonstrate high 

performance in terms of accuracy on a particular dataset described in the corresponding publication, 

however, a comprehensive comparison of both approaches on a common database has not been 

performed yet.   

In this paper, we focus on a comparative evaluation of supervised and unsupervised ML 

techniques for the application of residential water end-use classification, and aim at deriving a 

decision support for the selection of the appropriate approach, revealing possible pitfalls of water 

end-use classification. For this purpose, we implemented a large variety of ML-based approaches 

proposed in the state-of-the-art literature, i.e. the clustering algorithm based on DTW established by 

Nguyen et al. [2], k-means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), 

Ordering Points To Identify the Clustering Structure (OPTICS), Clustering in Arbitrary Subspaces 

based on the Hough transform (CASH), as well as two classifiers based on Support Vector Machines 

(SVM). Subsequently, the methods are evaluated on a common database generated using a stochastic 

water consumption simulation framework. Finally, evaluation results are analyzed and discussed in 

detail, with the intention to draw implications and recommendations of experiement set-ups for data-

driven water end-use classification in general. 

2. Methods 

In this section, the simulated common water consumption database as well as the ML techniques 

employed and evaluated in this work are descriped in detail. An overview of supervised and 

unsupervised ML methods is presented in Figure 1. Both labels and water consumption data are 

generated with a stochastic simulation proposed in [16]. 

2.1. Simulation of Common Database and Data Preprocessing 

The datasets employed in this paper are generated using the STochastic Residential water End-

use Model (STREaM) developed by Cominola et al. [16]. It is a stochastic water consumption 

simulation tool with a high capability to model the real-world water consumption patterns of the 

end-uses, such as toilet, shower, faucet, dishwasher, washing machine and bathtub. STREaM is 

calibrated using observed and disaggregated water consumption data from 300 single-family houses 

in nine U.S. cities. With a stochastic model based on monte-carlo simulation, time series with different 

temporal resolutions (up to 10 seconds) and number of inhabitants can be emulated. To the best of 
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our knowledge, STREaM is the most advanced framework for realistic water comsumption 

simulation to date.  

 
Figure 1. Comparison of supervised and unsupervised learning: (a) Supervised techniques have a 

learning phase, in which the classifier trains on given labels. In the classification phase, the classifier 

is tested on a part of the dataset, which is not used in the training phase; (b) Unsupervised techniques 

search for grouping structures in the complete dataset. 

In this work, the chosen temporal resolution is ten seconds, which corresponds to the highest 

possiple resolution of the simulation tool. Six datasets are generated with a varying number of 

inhabitants from one to six. In addition to the resolution and the number of inhabitants, the efficiency 

of the present end-uses and the time horizon of the datasets are fixed to “standard fixture”( i.e. 

fixtures which are not specified to improve the water use efficiency) and one year, respectively. 

The output of the simulation includes six time series corresponding to the end-use toilet, shower, 

faucet, washing machine, dishwasher and bathtub. An additional time series aggregating the six 

above mentioned end-uses is also generated. The entire aggregated time series is segmented into 

water use events (or sequences) with the assumption, that a contiguous water consumption event 

does not have any interruption which is longer than 150 seconds. Since the timestamps of each event 

are known, labels for events extracted from the aggregated time series are computed by searching for 

water consumption at these timestamps in the time series representing the single end-uses. The result 

of the preprocessing is a set of water use event time series with corresponding end-use labels. Events 

with a consumption of less or equal to one liter as well as events with more than 1000 liter are 

removed from this set, as they indicate leaks and might not be connected to an end-use of interest. 

2.2. Feature Description and Feature Extraction 

Prior to the application of classification or clustering techniques, relevent features describing the 

water events are commonly selected from the simulated water consumption data, except for a DTW 
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based algorithm described in Sec. 2.4.1. Features selected in this work include volume, duration, 

maximum, minimum and most common flow rate, as well as the corresponding numbers of 

occurrences of these flow rates, the number of different flow rates and two orthogonal harmonic 

functions representing the time of the day. Since these features have different scales, we performed 

z-normalization in order to prevent the effect that features with a larger scale will dominate the other. 

Subsequently, we compute the pair-wise Pearson Correlation Coeeficient (PCC) of the features, and 

exclude one of the two features when the PCC is higher than 0.9. In order to deal with the curse of 

dimensionality, Principal Component Analysis is employed as dimensionality reduction technique 

prior to all algorithms except for CASH (refer to Sec. 2.4.5).  

2.3. Supervised Techniques 

In the category supervised learning techniques, we implemented two classifiers, namely a multi-

class SVM as well as binary SVMs per end-use. Generally, SVMs separate classes with a maximal 

margin hyperplane in the feature space. The regularization parameters for the SVMs are set to 1.0 

and Radial Basis Functions are utilized as the kernel. Basically, a binary SVM is trained to distinguish 

a single end-use class from all other end-uses. Therefore, seven binary SVMs are trained to each 

identify one end-use: Toilet, shower, faucet, dishwasher, washing machine, bathtub and overlapping 

events (i.e. events with more than one active end-use). In contrast a multi-class SVM is able to classify 

all seven end-uses at once. This is achieved by using a so-called one-versus-one approach. For every 

possible pair of classes, one SVM is trained to distinguish the two classes. The final multi-class 

decision is a majority vote of the 21 SVMs. 

2.4. Unsupervised Techniques 

The unsupervised methods evaluated in this paper include the clustering algorithm based on 

DTW established by Nguyen et al. [2], k-means, DBSCAN, OPTICS and CASH. Each of them is 

described in detail in the following sections. 

2.4.1. Threshold-based Clustering using Dynamic Time Warping 

The algorithm presented in [2] is based on the idea that the similariy of two events (or sequences) 

of a time series can be approximated by their distances to a reference event. This reference event is 

chosen arbitrarily from the dataset as described in [8] and will not be clustered. First, DTW distances 

of all water use events in the dataset to the reference event are calculated. Subsequently, relative 

distances are computed for each sequence. A threshold α is introduced to assign the event to a cluster. 

For algorithmic details we refer to the original work published in [2]. In this study, the threshold α is 

manually fine tuned to 0.6.  

2.4.2. K-means 

K-means is one of the most frequently used clustering algorithms, which use euclidean distances 

in the feature space (refer to 2.2) to determine cluster memberships. The optimal hyperparameter k, 

i.e. the number of clusters, is computed with an Elbow method using inertia. The output of this 

analysis, namely k=10 is fixed for all experiments conducted.    

2.4.3. DBSCAN 

In contrast to k-means, DBSCAN [20] is a density-based clustering algorithm. It uses the concept 

of core, border and noise points to form partitions in the feature space. Two hyperparameters, eps 

and minPts, are required to distinguish these three types of points. An neighborhood with a radius 

of eps around each feature vector is selected and the number of feature vectors in its neighborhood is 

counted. If a vector has more than minPts neighbors, then this vector is considered to be a core point. 

If a vector has less than minPts neighbors but one core point in its neighborhood, then this vector is a 

border point. All remaining vectors are noise points. The superposition of core and border points 

forms a clusters. Unlike k-means, DBSCAN determines the number of clusters intrinsically based on 
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the distribution of data points in the feature space. minPts and eps are set to 14 and 2, respectively, 

where the former is calculated with the rule of thumb minPts = 2  number of dimensions after 

dimensionality reduction [21], and the latter is estimated with a 14-Nearest Neighbor Distance Graph.  

2.4.4. OPTICS 

OPTICS [22] is an extended version of DBSCAN, hence also applies the notion of core, border 

and noise points. However, instead of looking at a fixed neighborhood area, an infinite number of 

distance parameters epsi is applied, which are smaller than a “generating distance” epsmax ( 0 ≤ epsi ≤ 

epsmax). This allows OPTICS to find clusters of different densities in the feature space. epsmax can simply 

be set to infinity, as this will identify clusters across all scales [23]. In the original paper [22], 

experiments indicated that values between 10 and 20 for minPts will always lead to promising results. 

Hence, minPts is chosen to be 15 in this work. 

2.4.5. CASH 

CASH [24] is a clustering algorithm specifically designed for high-dimensional data. It uses a 

Hough transform to bypass the curse of dimensionalty. The feature vectors are transformed from the 

feature space to a parameter space, which corresponds to the space of all possible subspaces of the 

feature space. Vectors in the feature space are equivalent to sinusoidal curves in the parameter space. 

Instead of looking at a spatial proximity in the feature space to form clusters, intersections of curves 

in the parameter space are determined. An intersection in the parameter space means that the two 

vectors in the feature space lie on a common hyperplane, therefore are correlated. Since CASH does 

not rely on any distance-based measures in the feature space, it is not affected by curse of 

dimensionality. Consequently, dimensionality reduction techniques are dispendable. The three 

hyperparameters, namely minimum number of points in a cluster, the maximal allowed deviation 

and the maximum number of successive splits are set to 20, 0.1 and 3, respectively. 

3. Results and Discussion 

The datasets described in section 2.1 are addressed as 1P, 2P, 3P, 4P, 5P and 6P referring to the 

number of inhabitants in the simulated household. The following sections provide the evaluation of 

the supervised and unsupervised techniques using these six datasets. 

3.1. Evaluation of the Supervised Techniques 

For a fair comparison, we calculated accuracy and precision both for multi-class and binary 

SVMs. In detail, precision, recall and f1-score for all classified end-uses are first estimated for the 

multi-class SVMs. The accuracy is computed in the subsequent step. For binary SVMs, confusion 

matrices are used to compute accuracies and precisions of the classifiers, as the number of positive 

and negative samples is highly unbalanced. The split of training and test data is 0.8 to 0.2 for all 

experiments conducted. 

3.1.1. Evaluation Results 

Figure. 2 presents the quantitative comparison of the accuracies for multi-class and binary SVMs. 

The evaluation results for the multi-class SVMs are detailed in tables A1 to A6. The precisions, recalls 

and f1-scores for the dishwasher class have values close to zero. For the classes washing machine, 

bathtub, as well as overlapping events, the corresponding values are slightly higher than 0.5. Lastly, 

the precisions, recalls and f1-scores for the toilet, shower and faucet classes have a range between 0.73 

and 0.96. The accuracies/micro averages of the classifiers vary between 0.78 and 0.82 as depicted in 

Figure 2. 

Confusion matrices depicted in Table B1 demonstrate the performance of the binary SVMs. For 

the end-uses shower, washing machine, dishwasher and bathtub, the binary SVMs have a high accuracy. 

The accuracy of binary SVMs for end-use events toilet and faucet are relatively low, but still 

outperforms the multi-class SVM. Compared to bathtub and shower, the precisions for toilet, faucet and 
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washing machine are significantly lower (refer to the confusion matrix in B1). In case of dishwasher, the 

precision is not computable, since there is no true positive event recognized. 

 

Figure 2. Accuracy ranges for multi-class and binary SVMs. 

3.1.2. Discussion 

At first sight, binary SVMs seem to outperform the multi-class SVM (refer to Figure 2). In case 

of shower and bathtub, binary SVMs demonstrate high performance in terms of accuracy and precision. 

This is the consequence of the characteristics of both events, i.e. both of them are characterized by a 

sharp ascent of flow rate, where the high flow rate is continuous for several minutes, mainly without 

any interruption.  

However, the conclusion that binary SVMs outperform the multi-class SVM has to be made with 

care, as the inbalance in the sample distribution shifts the evaluation metrics for binary SVMs to 

higher values. For instance, the binary SVM is not able to recognize any dishwasher events. Although 

the corresponding accuracy is 100%, this classifier still fails to identify the dishwasher events correctly. 

Similar results can be observed for washing machine, where the binary SVM has a high accuracy but a 

relatively low precision. These results indicate that the classification framework described in this 

study comprising data preprocessing, feature extraction and binary SVMs are not ideal for water end-

uses, where a single water consumption pattern is not representative for the end-use event. More 

concretely, an end-use event of dishwasher or washing machine usually continuous for more than an 

hour. However, the water consumptions assembling these end-uses are usually several separated 

consumptions patterns with large temporal intervals of interruption. Since the time series sequences 

are considered as coherent when the temporal interval of interruption is less than 150 seconds (refer 

to Section 2.1), the end-uses dishwasher or washing machine are not described by the selected features 

precisely.  

For the end-uses toilet and faucet, binary SVMs tend to have high false positive and false negative 

rates. It indicates, that these two events are often confused with other end-uses. Both of them are 

abrupt and short events corresponds to a sharp curve of consumption volume and flow rate. Thus, 

additional features with more discriminative power should be utilized to increase the performance 

of the classification. 

3.2. Evaluation of the Unsupervised Techniques 
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In contrast to the evaluation of supervised techniques, accuracy and precision cannot be 

computed for the evaluation of unsupervised techniques directly, as the clusters recognized by 

clustering methods are not necessarily equivalent to the end-use classes. For instance, we identified 

10 clusters by using the k-means method, however there are only seven end-uses in the simulated 

database. Furthermore, the identified clusters are not assigned to any end-use classes inherently, 

hence the list of clusters will be a permutation of the list of end-uses. For these reasons, the Adjusted 

Rand Index (ARI) and the Adjusted Mutual Information (AMI), which are commonly used to assess 

whether detected clusters correspond to ground truth classes, are utilized as evaluation metrics. 

Moreover, for CASH, DBSCAN, OPTICS and the clustering algorithm based on DTW, the 

number of detected clusters is presented. For k-means, the number of clusters is a hyperparameter 

fixed to ten (refer to Section 2.3.2) in this study. 

3.2.1. Evaluation Results 

The evaluation results for the unsupervised techniques described from Section 2.4.1 to 2.4.5 are  

summarized in Table 2 to 6, respectively. Obviously, the number of the estimated clusters differs 

from the actual number of end-uses greatly. With regard to the similarity between the estimated 

clusters and the real end-use classes (refer to ARI and AMI values), the performance of the clustering 

methods can be ordered as k-means, DTW-based method, DBSCAN, CASH and OPTICS, 

decendingly. All clustering methods demonstrate low ARI and AMI values for all experiments 

conducted.  

3.2.2. Discussion 

The evaluation results for all clustering algorithms show that the identified clusters do not 

correspond to the ground truth end-use classes. One reason why the unsupervised techniques are 

not able to estimate the end-uses in the given datasets is, that clustering methods generally take the 

most significant differences in a dataset into account. This might not be the end-uses, but the variation 

of consumer behaviours in the household or other effects which are not related the end-use 

classification. Moreover, single end-uses might possess a variety of different consumption patterns. 

For example, a washing machine shows different patterns depending on its programm settings, the 

wash load or even the different sections of a wash cycle. These differences within individual end-

uses make the task of separating end-use categories through clustering more challenging, especially 

since the most significant differences in a dataset determine the outcome of clustering. 

Table 2. Evaluation metrics for the clustering algorithm based on DTW. 

 1P 2P 3P 4P 5P 6P 

Estimated number of clusters 21 17 19 23 27 19 

ARI 0.06 0.06 0.05 0.05 0.05 0.05 

AMI 0.15 0.11 0.10 0.14 0.12 0.12 

Table 3. Evaluation metrics for k-means 

 1P 2P 3P 4P 5P 6P 

ARI 0.17 0.10 0.09 0.12 0.11 0.08 

AMI 0.24 0.18 0.18 0.20 0.19 0.15 

Table 4. Evaluation metrics for DBSCAN 

 1P 2P 3P 4P 5P 6P 

Estimated number of clusters 2 2 1 1 1 1 

ARI 0.04 0.03 0.02 0.01 0.01 0.01 

AMI 0.06 0.04 0.03 0.02 0.02 0.01 
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 Table 5. Evaluation metrics for OPTICS. 

 1P 2P 3P 4P 5P 6P 

Estimated number of clusters 11 17 26 21 17 27 

ARI -0.03 -0.03 -0.03 -0.01 -0.02 -0.02 

AMI 0.02 0.03 0.03 0.03 0.03 0.02 

 Table 6. Evaluation metrics for CASH. 

 1P 2P 3P 4P 5P 6P 

Estimated number of clusters 30 37 44 47 51 98 

ARI -0.04 -0.04 -0.04 -0.04 -0.03 -0.06 

AMI 0.04 0.04 0.04 0.05 0.05 0.07 

4. Conclusions  

In this work, we perform a comprehensive quantitative comparison of several supervised and 

unsupervised ML techniques for residential water end-use classification. A common database is 

created with a stochastic simulation tool based on real consumption data. One of the most important 

findings of the quantitative results is, that the unsupervised methods alone, i.e. clustering techniques, 

are not sufficient to detect the correct end-uses of domestic water consumption fully automatically. 

This is somewhat consistant to the implications of the state-of-the-art literatures: in the context of 

end-use classifications, clustering techniques are commonly employed in combination with manual 

processing [1] or supervised techniques [2, 3, 4]. 

Another conclusion we can draw from this study is, that supervised ML techniques pose an 

efficient way to perform water end-use classification. The accuracies and precisions of such classifiers 

do not only depend on the classifier itself, but are also strongly influenced by the data preprocessing 

and feature extraction steps. Moreover, datasets solely including the water consumption data are not 

sufficient for the identification of complex end-uses (e.g. washing machine or dishwasher), since 

significant prior knowledge, i.e. program settings of the machine or accurate start and end time of 

the program, are not comprised in the datasets. Consequently, annotated datasets with labeled 

ground truth events are essential for the application of water end-use classification. 

In order to establish a large representative dataset comprising annotations, a manual labeling 

process is inevitable. For this purpose, end consumers in different circumstances (e.g. housing and 

household situation, age, gender etc.) need to be encouraged to participate. Furthermore, manual 

labeling tends to produce inaccurate labels, since human-beings are not predestined for repetitive 

tasks. Thus, quality checks of the manual labels are necessary. Additionally, technical remedies could 

be utilized to generate accurate end-use labels. For washing machine or dishwasher, additional 

sensor data, such as machine internal time logger, or external electricity logger, can be used as labels. 

A fully automatic labeling of some other daily end-use events (e.g. toilet and faucet) can be achieved 

with an additional smart water meter installed directly on the water faucet. Considering the above 

mentioned aspects, crowdsourcing approaches which have been applied for medical applications [25] 

could be a possible solution. A suitable framework to implement such approaches successfully is the 

so called citizen science project, where the citizens are contributing to a scientific project actively with 

their resources and knowledge. Scientific results and other output of the project are accessable to the 

participants as an exemplary reward.  

Supplementary Materials: The datasets described in section 2.1 are available online at https://github.com/Nora-

Go/Water_Consumption_Datasets.  

Acknowledgments: The methods and information presented in this work are based on research and are not 

commercially available. Public foundings are not required for this study.  



Journal Name 2020, x, x 9 of 14 

 

Author Contributions: The experiments are conceived and co-created with the contribution of all authors; 

N.Gourmelon performed the experiments; N. Gourmelon and S. Bayer analyzed the data; all authors listed wrote 

the paper.  

Conflicts of Interest: The authors declare that they have no conflict of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 

ML: Machine-Learning 

SVM: Support Vector Machine 

DTW: Dynamic Time Warping 

DBSCAN: Density-Based Spatial Clustering of Applications with Noise 

OPTICS: Ordering Points To Identify the Clustering Structure 

CASH: Clustering in Arbitrary Subspaces based on the Hough transform 

ARI: Adjusted Rand Index 

AMI: Adjusted Mutual Information 

Appendix A 

Table A1. Classification report for the 1P dataset. 

 Precision Recall F1-Score Support 

0 1 0.66 0.63 0.65 150 

1 1 0.80 0.84 0.82 466 

2 1 0.80 0.96 0.87 49 

3 1 0.83 0.89 0.86 775 

4 1 0.84 0.56 0.67 137 

5 1 0.25 0.02 0.04 47 

6 1 0.56 0.56 0.56 9 

     

Accuracy 2   0.80 1633 

Macro Average 0.68 0.64 0.64 1633 

Weighted Average 0.79 0.80 0.79 1633 
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 

= Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 2 The micro average 

corresponds to the accuracy. If only one subset of the classes is present in the predictions for the test 

data, the two metrics are not equivalent. 

Table A2. Classification report for the 2P dataset. 

 Precision Recall F1-Score Support 

0 1 0.69 0.66 0.68 289 

1 1 0.79 0.87 0.83 692 

2 1 0.89 0.91 0.90 56 

3 1 0.85 0.86 0.86 1098 

4 1 0.77 0.58 0.66 110 

5 1    0 

6 1 1.00 0.50 0.67 2 

     

Micro Average 0.81 0.82 0.82 2247 

Macro Average 0.83 0.73 0.77 2247 
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Weighted Average 0.81 0.82 0.82 2247 
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 

= Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 

Table A3. Classification report for the 3P dataset. 

 Precision Recall F1-Score Support 

0 1 0.69 0.70 0.69 379 

1 1 0.77 0.80 0.78 708 

2 1 0.87 0.92 0.90 66 

3 1 0.81 0.85 0.83 1253 

4 1 0.82 0.61 0.70 137 

5 1    0 

6 1 0.80 0.57 0.67 7 

     

Micro Average 0.78 0.80 0.79 2550 

Macro Average 0.79 0.74 0.76 2550 

Weighted Average 0.78 0.80 0.79 2550 
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 

= Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 

Table A4. Classification report for the 4P dataset. 

 Precision Recall F1-Score Support 

0 1 0.78 0.75 0.77 471 

1 1 0.79 0.83 0.81 844 

2 1 0.95 0.89 0.92 89 

3 1 0.82 0.86 0.84 1275 

4 1 0.76 0.71 0.73 166 

5 1    0 

6 1 1.00 0.33 0.50 3 

     

Micro Average 0.81 0.82 0.81 2848 

Macro Average 0.85 0.73 0.76 2848 

Weighted Average 0.81 0.82 0.81 2848 
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 

= Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 

Table A5. Classification report for the 5P dataset. 

 Precision Recall F1-Score Support 

0 1 0.70 0.77 0.73 505 

1 1 0.77 0.82 0.79 873 

2 1 0.94 0.93 0.93 113 

3 1 0.81 0.83 0.82 1315 

4 1 0.81 0.53 0.64 207 

5 1 0.60 0.05 0.08 66 

6 1 0.80 0.60 0.69 20 

     

Accuracy 2   0.78 3099 
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Macro Average 0.77 0.65 0.67 3099 

Weighted Average 0.78 0.78 0.77 3099 
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 

= Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 2 The micro average 

corresponds to the accuracy. Solely when only a subset of the classes is present in the predictions for 

the test data, the two metrics differ. 

Table A6. Classification report for the 6P dataset. 

 Precision Recall F1-Score Support 

0 1 0.73 0.78 0.76 747 

1 1 0.73 0.82 0.77 956 

2 1 0.87 0.82 0.84 112 

3 1 0.85 0.83  0.84 1604 

4 1 0.78 0.29 0.42 132 

5 1 0.67 0.04 0.08 50 

6 1 1.00 0.50 0.67 4 

     

Accuracy 2   0.79 3605 

Macro Average 0.80 0.58 0.62 3605 

Weighted Average 0.79 0.79 0.78 3605 
1 The rows in the classification report correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 

= Shower, 3 = Faucet, 4 = Washing Machine, 5 = Dishwasher, 6 = Bathtub. 2 The micro average 

corresponds to the accuracy. Solely when only a subset of the classes is present in the predictions for 

the test data, the two metrics differ. 

Appendix B 

Table A7. Confusion matrices for the binary SVMs. 

 1P 2P 3P 4P 5P 6P 

0 1 [
1456 27
73 77

] [
1941 53
127 162

] [
2164 71
154 225

] [
2377 62
149 322

] [
2492 102
159 346

] [
2719 139
239 508

] 

1 1 [
1077 90
79 387

] [
1470 121
121 571

] [
1759 147
168 540

] [
1898 168
174 670

] [
2032 194
188 685

] [
2424 225
256 700

] 

2 1 [
1579 5
4 45

] [
2224 3
7 49

] [
2542 6
6 60

] [
2817 4
14 75

] [
2983 3
9 104

] [
3486 7
25 87

] 

3 1 [
741 117
100 675

] [
1062 123
180 918

] [
1167 194
233 1020

] [
1448 187
225 1050

] [
1588 196
290 1025

] [
1835 166
312 1292

] 

4 1 [
1484 12
73 64

] [
2159 14
57 53

] [
1077 90
79 387

] [
2718 26
82 84

] [
2871 21
124 83

] [
3471 2
119 13

] 

5 1 [
1586 0
47 0

] [
2247 0
36 0

] [
2550 0
64 0

] [
2848 0
62 0

] [
3033 0
66 0

] [
3555 0
50 0

] 

6 1 [
1620 4
5 4

] [
2281 0
1 1

] [
2606 1
3 4

] [
2907 0
2 1

] [
3076 3
8 12

] [
3601 0
3 1

] 

1 The rows correspond to the end-use labels: 0 = Overlapping, 1 = Toilet, 2 = Shower, 3 = Faucet, 4 = 

Washing Machine, 5 = Dishwasher, 6 = Bathtub. 
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