Nonlinear Filter for a System with Randomly

Delayed Measurements and Inputs

Kundan Kumar and Shovan Bhaumik

Indian Institute of Technology Patna
Presented by Kundan Kumar

ECSA-7 2020

1/17



Introduction

Objective

An extension of the conventional CQKEF, in order to enable it for
dealing with randomly delayed measurements and inputs.

Key points

o Filters estimate the states of a dynamic system recursively from
given noisy measurements.

¢ In networked control systems (NCSs), State estimators and
plants are remotely located.

¢ Measurements and input signals are transmitted through a
common unreliable network.

¢ In such scenario, measurements and input signals are generally
delayed.

¢ Delay is random and of arbitrary step.
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Problem Formulation

State space model

e Process model

Xk = ¢(Xk—1) + BUx + nk—1, (1)
e Measurement model
Zk = Yk(Xk) + vk, (2)

where
- xx € R"is the state, and z, € R is measurement,
- ¢(xx) and ~(xx) are nonlinear functions of state,
— Uy is delayed input, and B is a matrix with acceptable dimension,
- nk—1 ~ N(0, Qx_1) and v, ~ N(0, Rx) are noises.
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Modeling of Delayed Measurement

Randomly delayed measurement (y)
N—1

Yo=Y B9z, (©)

i=0

where

= B9 = ([T B)(1 — Bis1) and B = 1,

- Bj(j=0,1,2,---) are mutually independent Bernoulli random
variables.

e Y ={y} with {i=1,2,--. Kk} denotes the set of delayed
measurement.

e From the distribution of ;,

P(ﬂj:1):P:E[ﬂj],
and E[(8; — )]— p(1 - p).
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Modeling of Delayed Input
Randomly delayed control input (Uy)

N1
k=Y aluy_;, (4)

i=0

where
- all) = (H}:o aj)(1 —ajpq)and ag =1,
- «aj,j €1{0,1,2,---} are mutually independent Bernoulli random
variables.

e From the distribution of «,
P(aj=1) = q = E|a]],
P(OszO):'l—CL
and E[(oj — g)?] = q(1 — q).
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Filtering under Bayesian Framework

Assumption

o States follow a first order Markov process

P(Xk|Xk—1, Xk—2, - , Xo) = P(Xk|Xk—1)

P(xk|Yx) is Gaussian with mean X, and Covariance Py.
The prior density function of xx

P(Xk|Yk—1) = N (Xk; Xxjk—1, Prjk—1)-

The prior density function for delayed measurement yj is
Gaussian, i.e.

Pyicl Yi—1) = N (¥ii Jrik—15 Pifi_+)-

The density function for the non-delayed measurement,
P(zk|Yk-1), is Gaussian with mean 2 x_1 and covariance P,ffk_1
respectively.
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Filtering under Bayesian Framework(cont’d...)

State estimation

Generally, state estimation is realized in two steps: (i) time update (ii)
measurement update.

Time update

Prior estimated state (Xx—1) and its covariance (Pik—1) are

Xkjk—1 = E[{d(Xk—1) + Bl + nk—1}| Yk—1]
= /¢(Xk—1)N(Xk—1;)A(k71\k—1aPk—1\k—1)dxk—1 + BE[ ],

Prik—1
= E[{(X — Kk—1)(Xk — Rik—1) "} Ye—1] ©
= E[¢(xk—1)¢" (Xk—1)|Ye—1] — E[p(Xk—1)| Ye—1]E[¢" (Xk—1)| Ye—1]

+ BE[iki]1BT — BE[U]E[T]]1BT + Q.

)
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Filtering under Bayesian Framework(cont’d...)

Measurement update

The expectation and covariance of the non-delayed measurement

Zkjk—1 = /’Y(Xk)N(Xk;)A(k\k—hPk\k—1)dxka (7)

k-1 = /'Y(Xk)'YT(Xk)N(XMj\(kM—h Prik—1)0Xk — Zkjk—124k_1 + B
(8)

The cross-covariance between state and non-delayed measurement

ikt = /Xk'}/kT(Xk)N(Xk;)A(klk—hPk|k—1)dxk — Xek—12qk_1- (9)

<
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Filtering under Bayesian Framework(cont’d...)

Measurement update

The expectation and covariance of the delayed measurement

N—1 i
Pik1 =Y _(TT P = Prst) Zeiih—i-1- (10)

=0 j=1

N—1 N—1 i
PI}(/T/k1:Z le — Piv1)PgZ :|k:1+z HP/ (1 —pit1)

i=0 j= 1, i=0 j=1 (11)
{1- (HP/)(1 - pi+1)}2k*/|k*f*12kT—i\k—i—1'
j=1
The cross-covariance between state and delayed measurement

Plﬁlk 1= z;(HP/ = Pis1)Peijk—i1- (12)
=0 j=
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Filtering under Bayesian Framework(cont’d...)

State estimation
The posterior state estimate

Xk = Kgk—1 + Ke(Yk = Jkjk—1); (13)
and the posterior error covariance
Pk = Prjk—1 — Kk Pl K{, (14)

k|k—1

where the Kalman gain (Kjx) is

K = Pet_1 (P _4) (15)
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Block Diagram

Algorithm diagram for Bayesian framework of filtering

Kalman gain
— -1
Ky = Pﬁk—1(PK|yk—1)

Measurement
Yk

Initializations
Xo,Po

Prior estimate .. .
% p :l’) Postirior estimate
kIk- 1,Pk|k= 1:Tk k- 15 2 e 4
Py py Xk = Xik-1 + Kk (0 = Ijk-1)
kik- 1P klk-1

Postirior error covaraince u
_ — vy T Xk |k
Pk = Py 1 = KicPyjy- 1 Ky '

Figure 1: Algorithm diagram for nonlinear filtering under Bayesian framework
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Simulation Results

Problem 1
Here we consider a dynamic system with state equation:

Xk = 2C0S(Xk_1) + Bl + 1k,

and the measurement equation:

Ve =/ 1+ XX + vk,

where 7, ~ N(0, Qx) and v, ~ N (0, Ry).
e The following parameters are used for simulation:
ux = 2sin(0.2k),Qx = 5/ and R, = 5.
e The filter is initialized with xp=0.1¢gx1, )“(0|0=156X1 and Pyo=5/¢.
¢ Simulation has been carried out for 200 time-steps.

e Average RMSE is calculated over 200 MC runs for different
values of p (we assume p = q).
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Simulation Results
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Simulation Results
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Discussion and Conclusion

o We have developed a generalized framework of nonlinear
filtering in the presence of arbitrary random delay under
— transmission of measurement from sensor to estimator,
— transmission of input from controller to system.

e The methodology is realized with the CQKF and the proposed
CQKF (CQKF-RD).

e Performance of the filtering method is observed using averaged
RMSE.

e The superiority of the proposed method (CQKF-RD) has been
shown over CQKF.

15/17



Selected References

@ Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with application to tracking
and navigation, Wiley-Interscience Pub., New York, 2001.

@ A. K. Singh, P. Date, and S. Bhaumik, "A modified Bayesian filter for randomly
delayed measurements," IEEE Trans. Automat. Control, vol. 62, no. 1, pp.
419-424, 2017.

S. Sun and J. Ma, "Linear estimations for networked control systems with random
transmission delays and packet dropouts," Inf. Sci., vol. 269, pp. 349-7365, 2014.

A. Ray, L. W. Liou, and J. H. Shen, "State estimation using randomly delayed
measurements," ASME J. Dynamic Syst., Measurement, Contr., vol. 115, pp.
19-26, Mar. 1993.

[=) =) &Y

S. Bhaumik and Swati, "Cubature quadrature Kalman filter," IET Signal
Processing, vol. 7, no. 7, pp. 1-9, Sep. 2013.

@ I. Arasaratnam and S. Haykin, "Cubature Kalman filter," IEEE Trans. Automat.
Control, vol. 54, no. 6, pp. 12547-1269, May 2009.

16/17






