Nonlinear Filter for a System with Randomly Delayed Measurements and Inputs

Kundan Kumar and Shovan Bhaumik

Indian Institute of Technology Patna

Presented by Kundan Kumar

ECSA-7 2020

Introduction

Objective

An extension of the conventional CQKF, in order to enable it for dealing with randomly delayed measurements and inputs.

Key points

- Filters estimate the states of a dynamic system recursively from given noisy measurements.
- In networked control systems (NCSs), State estimators and plants are remotely located.
- Measurements and input signals are transmitted through a common unreliable network.
- In such scenario, measurements and input signals are generally delayed.
- Delay is random and of arbitrary step.

Problem Formulation

State space model

Process model

$$\mathbf{x}_{k} = \phi(\mathbf{x}_{k-1}) + B\tilde{\mathbf{u}}_{k} + \eta_{k-1}, \qquad (1)$$

Measurement model

$$z_k = \gamma_k(x_k) + \nu_k, \qquad (2)$$

where

- $x_k \in \mathbb{R}^n$ is the state, and $z_k \in \mathbb{R}^d$ is measurement,
- $\phi(x_k)$ and $\gamma(x_k)$ are nonlinear functions of state,
- \tilde{u}_k is delayed input, and *B* is a matrix with acceptable dimension,
- $\eta_{k-1} \sim \mathcal{N}(0, Q_{k-1})$ and $\nu_k \sim \mathcal{N}(0, R_k)$ are noises.

Modeling of Delayed Measurement

Randomly delayed measurement (y_k)

$$y_k = \sum_{i=0}^{N-1} \beta^{(j,i)} z_{k-i},$$

where

- $\beta^{(j,i)} = (\prod_{j=0}^{i} \beta_j)(1 \beta_{i+1})$ and $\beta_0 = 1$,
- β_j ($j = 0, 1, 2, \cdots$) are mutually independent Bernoulli random variables.
- Y_k = {y_i} with {i = 1, 2, · · · , k} denotes the set of delayed measurement.
- From the distribution of β_j ,

$$P(\beta_{j} = 1) = p = E[\beta_{j}],$$

$$P(\beta_{j} = 0) = 1 - p,$$

and
$$E[(\beta_{j} - p)^{2}] = p(1 - p).$$

(3)

Randomly delayed control input (\tilde{u}_k)

$$\tilde{u}_{k} = \sum_{i=0}^{N-1} \alpha^{(j,i)} u_{k-i},$$
(4)

where

-
$$\alpha^{(j,i)} = (\prod_{j=0}^{i} \alpha_j)(1 - \alpha_{i+1})$$
 and $\alpha_0 = 1$,

- $α_j, j ∈ {0, 1, 2, · · · }$ are mutually independent Bernoulli random variables.
- From the distribution of α_i ,

$$P(\alpha_j = 1) = q = E[\alpha_j],$$

 $P(\alpha_j = 0) = 1 - q,$
and $E[(\alpha_j - q)^2] = q(1 - q).$

Filtering under Bayesian Framework

Assumption

States follow a first order Markov process

$$P(x_k|x_{k-1}, x_{k-2}, \cdots, x_0) = P(x_k|x_{k-1})$$

- $P(x_k|Y_k)$ is Gaussian with mean $\hat{x}_{k|k}$, and Covariance $P_{k|k}$.
- The prior density function of *x_k*

$$P(x_k|Y_{k-1}) = \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1}).$$

• The prior density function for delayed measurement *y_k* is Gaussian, *i.e.*

$$P(y_k|Y_{k-1}) = \mathcal{N}(y_k; \hat{y}_{k|k-1}, P_{k|k-1}^{yy}).$$

• The density function for the non-delayed measurement, $P(z_k|Y_{k-1})$, is Gaussian with mean $\hat{z}_{k|k-1}$ and covariance $P_{k|k-1}^{zz}$ respectively.

Filtering under Bayesian Framework(cont'd...)

State estimation

Generally, state estimation is realized in two steps: (i) time update (ii) measurement update.

Time update

Prior estimated state $(\hat{x}_{k|k-1})$ and its covariance $(P_{k|k-1})$ are

$$\hat{x}_{k|k-1} = E[\{\phi(x_{k-1}) + B\tilde{u}_k + \eta_{k-1}\}|Y_{k-1}] \\ = \int \phi(x_{k-1})\mathcal{N}(x_{k-1}; \hat{x}_{k-1|k-1}, P_{k-1|k-1})dx_{k-1} + BE[\tilde{u}_k],$$
⁽⁵⁾

$$P_{k|k-1} = E[\{(x_k - \hat{x}_{k|k-1})(x_k - \hat{x}_{k|k-1})^T\}|Y_{k-1}] = E[\phi(x_{k-1})\phi^T(x_{k-1})|Y_{k-1}] - E[\phi(x_{k-1})|Y_{k-1}]E[\phi^T(x_{k-1})|Y_{k-1}] + BE[\tilde{u}_k\tilde{u}_k^T]B^T - BE[\tilde{u}_k]E[\tilde{u}_k^T]B^T + Q_k.$$
(6)

Measurement update

The expectation and covariance of the non-delayed measurement

$$\hat{z}_{k|k-1} = \int \gamma(x_k) \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1}) dx_k, \qquad (7)$$

$$P_{k|k-1}^{zz} = \int \gamma(x_k) \gamma^T(x_k) \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1}) dx_k - \hat{z}_{k|k-1} \hat{z}_{k|k-1}^T + R_k.$$
(8)

The cross-covariance between state and non-delayed measurement

$$P_{k|k-1}^{xz} = \int x_k \gamma_k^T(x_k) \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1}) dx_k - \hat{x}_{k|k-1} \hat{z}_{k|k-1}^T.$$
(9)

Measurement update

The expectation and covariance of the delayed measurement

$$\hat{y}_{k|k-1} = \sum_{i=0}^{N-1} (\prod_{j=1}^{i} p_j) (1 - p_{i+1}) \hat{z}_{k-i|k-i-1}.$$
(10)

$$P_{k|k-1}^{yy} = \sum_{i=0}^{N-1} (\prod_{j=1}^{i} p_j) (1 - p_{i+1}) P_{k-i|k-i-1}^{zz} + \sum_{i=0}^{N-1} (\prod_{j=1}^{i} p_j) (1 - p_{i+1})$$

$$\{1 - (\prod_{j=1}^{i} p_j) (1 - p_{i+1})\} \hat{z}_{k-i|k-i-1} \hat{z}_{k-i|k-i-1}^{T}.$$
(11)

The cross-covariance between state and delayed measurement

$$P_{k|k-1}^{xy} = \sum_{i=0}^{N-1} (\prod_{j=1}^{i} p_j) (1 - p_{i+1}) P_{k-i|k-i-1}^{xz}.$$
 (12)

State estimation

The posterior state estimate

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(y_k - \hat{y}_{k|k-1}),$$
 (13)

and the posterior error covariance

$$\boldsymbol{P}_{k|k} = \boldsymbol{P}_{k|k-1} - \boldsymbol{K}_k \boldsymbol{P}_{k|k-1}^{yy} \boldsymbol{K}_k^T, \qquad (14)$$

where the Kalman gain (K_k) is

$$K_k = P_{k|k-1}^{xy} (P_{k|k-1}^{yy})^{-1}.$$
 (15)

Block Diagram

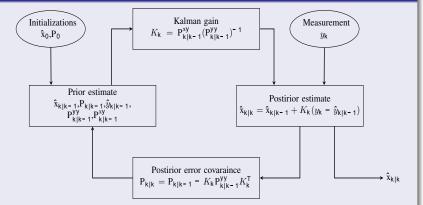


Figure 1: Algorithm diagram for nonlinear filtering under Bayesian framework

Simulation Results

Problem 1

Here we consider a dynamic system with state equation:

$$x_k = 2\cos(x_{k-1}) + B\tilde{u}_k + \eta_k,$$

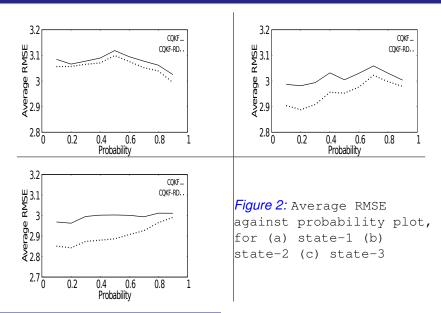
and the measurement equation:

$$y_k = \sqrt{1 + x_k^T x_k} + \nu_k,$$

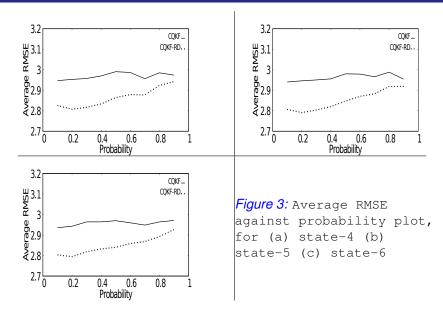
where $\eta_k \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_k)$ and $\nu_k \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k)$.

- The following parameters are used for simulation: $u_k = 2sin(0.2k), Q_k = 5I_6$ and $R_k = 5$.
- The filter is initialized with $x_0=0.1_{6\times 1}$, $\hat{x}_{0|0}=15_{6\times 1}$ and $P_{0|0}=5I_6$.
- Simulation has been carried out for 200 time-steps.
- Average RMSE is calculated over 200 MC runs for different values of p (we assume p = q).

Simulation Results



Simulation Results



- We have developed a generalized framework of nonlinear filtering in the presence of arbitrary random delay under
 - transmission of measurement from sensor to estimator,
 - transmission of input from controller to system.
- The methodology is realized with the CQKF and the proposed CQKF (CQKF-RD).
- Performance of the filtering method is observed using averaged RMSE.
- The superiority of the proposed method (CQKF-RD) has been shown over CQKF.

Selected References

- Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, *Estimation with application to tracking and navigation,* Wiley-Interscience Pub., New York, 2001.
- A. K. Singh, P. Date, and S. Bhaumik, "A modified Bayesian filter for randomly delayed measurements," *IEEE Trans. Automat. Control,* vol. 62, no. 1, pp. 419–424, 2017.
- S. Sun and J. Ma, "Linear estimations for networked control systems with random transmission delays and packet dropouts," *Inf. Sci.*, vol. 269, pp. 349-?365, 2014.
- A. Ray, L. W. Liou, and J. H. Shen, "State estimation using randomly delayed measurements," *ASME J. Dynamic Syst., Measurement, Contr.*, vol. 115, pp. 19–26, Mar. 1993.
- S. Bhaumik and Swati, "Cubature quadrature Kalman filter," *IET Signal Processing*, vol. 7, no. 7, pp. 1–9, Sep. 2013.
- I. Arasaratnam and S. Haykin, "Cubature Kalman filter," *IEEE Trans. Automat. Control,* vol. 54, no. 6, pp. 1254?-1269, May 2009.

