
1/17

Nonlinear Filter for a System with Randomly
Delayed Measurements and Inputs

Kundan Kumar and Shovan Bhaumik

Indian Institute of Technology Patna

Presented by Kundan Kumar

ECSA–7 2020

DAES



2/17

Introduction

Objective
An extension of the conventional CQKF, in order to enable it for
dealing with randomly delayed measurements and inputs.

Key points
• Filters estimate the states of a dynamic system recursively from

given noisy measurements.
• In networked control systems (NCSs), State estimators and

plants are remotely located.
• Measurements and input signals are transmitted through a

common unreliable network.
• In such scenario, measurements and input signals are generally

delayed.
• Delay is random and of arbitrary step.
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Problem Formulation

State space model
• Process model

xk = φ(xk−1) + Bũk + ηk−1, (1)

• Measurement model

zk = γk (xk ) + νk , (2)

where
– xk ∈ Rn is the state, and zk ∈ Rd is measurement,
– φ(xk ) and γ(xk ) are nonlinear functions of state,
– ũk is delayed input, and B is a matrix with acceptable dimension,
– ηk−1 ∼ N (0,Qk−1) and νk ∼ N (0,Rk ) are noises.
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Modeling of Delayed Measurement

Randomly delayed measurement (yk )

yk =
N−1∑
i=0

β(j,i)zk−i , (3)

where
– β(j,i) = (

∏i
j=0 βj)(1− βi+1) and β0 = 1,

– βj ( j = 0,1,2, · · · ) are mutually independent Bernoulli random
variables.

• Yk = {yi} with {i = 1,2, · · · , k} denotes the set of delayed
measurement.

• From the distribution of βj ,

P(βj = 1) = p = E [βj ],

P(βj = 0) = 1− p,

and E [(βj − p)2] = p(1− p).
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Modeling of Delayed Input

Randomly delayed control input (ũk )

ũk =
N−1∑
i=0

α(j,i)uk−i , (4)

where
– α(j,i) = (

∏i
j=0 αj)(1− αi+1) and α0 = 1,

– αj , j ∈ {0,1,2, · · · } are mutually independent Bernoulli random
variables.

• From the distribution of αj ,

P(αj = 1) = q = E [αj ],

P(αj = 0) = 1− q,

and E [(αj − q)2] = q(1− q).
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Filtering under Bayesian Framework

Assumption
• States follow a first order Markov process

P(xk |xk−1, xk−2, · · · , x0) = P(xk |xk−1)

• P(xk |Yk ) is Gaussian with mean x̂k|k , and Covariance Pk|k .
• The prior density function of xk

P(xk |Yk−1) = N (xk ; x̂k|k−1,Pk|k−1).

• The prior density function for delayed measurement yk is
Gaussian, i.e.

P(yk |Yk−1) = N (yk ; ŷk|k−1,P
yy
k|k−1).

• The density function for the non-delayed measurement,
P(zk |Yk−1), is Gaussian with mean ẑk|k−1 and covariance Pzz

k|k−1
respectively.
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Filtering under Bayesian Framework (cont’d...)

State estimation
Generally, state estimation is realized in two steps: (i) time update (ii)
measurement update.

Time update

Prior estimated state (x̂k|k−1) and its covariance (Pk|k−1) are

x̂k|k−1 = E [{φ(xk−1) + Bũk + ηk−1}|Yk−1]

=

∫
φ(xk−1)N (xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1 + BE [ũk ],

(5)

Pk|k−1

= E [{(xk − x̂k|k−1)(xk − x̂k|k−1)
T}|Yk−1]

= E [φ(xk−1)φ
T (xk−1)|Yk−1]− E [φ(xk−1)|Yk−1]E [φT (xk−1)|Yk−1]

+ BE [ũk ũT
k ]B

T − BE [ũk ]E [ũT
k ]B

T + Qk .

(6)
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Filtering under Bayesian Framework (cont’d...)

Measurement update
The expectation and covariance of the non-delayed measurement

ẑk|k−1 =

∫
γ(xk )N (xk ; x̂k|k−1,Pk|k−1)dxk , (7)

Pzz
k|k−1 =

∫
γ(xk )γ

T (xk )N (xk ; x̂k|k−1,Pk|k−1)dxk − ẑk|k−1ẑT
k|k−1 + Rk .

(8)

The cross-covariance between state and non-delayed measurement

Pxz
k|k−1 =

∫
xkγ

T
k (xk )N (xk ; x̂k|k−1,Pk|k−1)dxk − x̂k|k−1ẑT

k|k−1. (9)
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Filtering under Bayesian Framework (cont’d...)

Measurement update
The expectation and covariance of the delayed measurement

ŷk|k−1 =
N−1∑
i=0

(
i∏

j=1

pj)(1− pi+1)ẑk−i|k−i−1. (10)

Pyy
k|k−1 =

N−1∑
i=0

(
i∏

j=1

pj)(1− pi+1)Pzz
k−i|k−i−1 +

N−1∑
i=0

(
i∏

j=1

pj)(1− pi+1)

{1− (
i∏

j=1

pj)(1− pi+1)}ẑk−i|k−i−1ẑT
k−i|k−i−1.

(11)

The cross-covariance between state and delayed measurement

Pxy
k|k−1 =

N−1∑
i=0

(
i∏

j=1

pj)(1− pi+1)Pxz
k−i|k−i−1. (12)
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Filtering under Bayesian Framework (cont’d...)

State estimation
The posterior state estimate

x̂k|k = x̂k|k−1 + Kk (yk − ŷk|k−1), (13)

and the posterior error covariance

Pk|k = Pk|k−1 − Kk Pyy
k|k−1K T

k , (14)

where the Kalman gain (Kk ) is

Kk = Pxy
k|k−1(P

yy
k|k−1)

−1. (15)
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Block Diagram

Algorithm diagram for Bayesian framework of filtering

Kalman gain

Kk = P
xy

k |k� 1
(Pyy
k |k� 1

)� 1

Postirior estimate

x̂k |k = x̂k |k� 1 +Kk (yk � ŷk |k� 1)

Postirior error covaraince

Pk |k = Pk |k� 1 � KkP
yy

k |k� 1
KT
k

Prior estimate

x̂k |k� 1,Pk |k� 1,ŷk |k� 1,

P
yy

k |k� 1
,P

xy

k |k� 1

Measurement

yk

Initializations

x̂0,P0

x̂k |k

Figure 1: Algorithm diagram for nonlinear filtering under Bayesian framework
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Simulation Results

Problem 1
Here we consider a dynamic system with state equation:

xk = 2cos(xk−1) + Bũk + ηk ,

and the measurement equation:

yk =
√

1 + xT
k xk + νk ,

where ηk ∼ N (0, Qk ) and νk ∼ N (0, Rk ).
• The following parameters are used for simulation:

uk = 2sin(0.2k),Qk = 5I6 and Rk = 5.
• The filter is initialized with x0=0.16×1, x̂0|0=156×1 and P0|0=5I6.
• Simulation has been carried out for 200 time-steps.
• Average RMSE is calculated over 200 MC runs for different

values of p (we assume p = q).
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Simulation Results
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Figure 2: Average RMSE
against probability plot,
for (a) state-1 (b)
state-2 (c) state-3
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Simulation Results
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Figure 3: Average RMSE
against probability plot,
for (a) state-4 (b)
state-5 (c) state-6
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Discussion and Conclusion

• We have developed a generalized framework of nonlinear
filtering in the presence of arbitrary random delay under

– transmission of measurement from sensor to estimator,
– transmission of input from controller to system.

• The methodology is realized with the CQKF and the proposed
CQKF (CQKF-RD).

• Performance of the filtering method is observed using averaged
RMSE.

• The superiority of the proposed method (CQKF-RD) has been
shown over CQKF.
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