

COLOGNE OBOTSLAB

Promoting autonomy in care:
Combining sensor technology and social robotics for health monitoring

Caterina Neef and Anja Richert
Cologne Cobots Lab
TH Köln, Cologne, Germany

Technology

Arts Sciences

Motivation

- Demographic transition in Germany and around the world
 - More elderly people in need of care, cared for
 - At home by relatives and nurses
 - In nursing homes
- Important to support and unburden both elderly and caregivers
- One option: use of assistive technologies such as
 - Social robots for personal interactions
 - Wearable and non-wearable sensors for health monitoring
- Goal: support autonomy of elderly and increase quality of care

Source: German Federal Ministry of Health, July 2020, "Zahlen und Fakten zur Pflegeversicherung", <u>Link</u>

Demographic transition in Germany

Related Work

- Loza-Matovelle et al. 2019¹
 - Architecture of robot and sensors for elderly care
- Boumans 2020²
 - Use of patient-reported outcome measures with social robot
- Yusif et al. 2016³
 - Largest concern regarding assistive technologies:
 privacy, trust and added value
- → It is **essential** to **develop** technologies **together** with users

¹ Loza-Matovelle, D.; Verdugo, A.; Zalama, E.; Gómez-García-Bermejo, J. An Architecture for the Integration of Robots and Sensors for the Care of the Elderly in an Ambient Assisted Living Environment. Robotics 2019, 8, 76.

26.10.20 Promoting autonomy in care: Combining sensor technology and social robotics for health monitoring

Caterina Neef and Anja Richert, Cologne Cobots Lab

² Boumans, R.; van Meulen, F.; Hindriks, K.; Neerincx, M.; Olde Rikkert, M. A Feasibility Study of a Social Robot Collecting Patient Reported Outcome Measurements from Older Adults. International Journal of Social Robotics 2020, 12, 259–266.

³ Yusif, S.; Soar, J.; Hafeez-Baig, A. Older People, Assistive Technologies, and the Barriers to Adoption: A Systematic Review. International Journal of Medical Informatics 2016, 94, 112–116.

Sensor-robot ecosystem

Proposed architecture as a

- base for the sociotechnicaldevelopment of an ecosystemcomprised of
- √ health care sensors and
- ✓ a **social robot** to
- promote the autonomy of elderly people in need of care

Sensors:

Continuous Measurement

- Temperature
- Heart Rate

Interval Measurement

- EKG
- EEG
- EDA
- EMG
- SpO2

Social robot Pepper

Local Sensor Network

Health monitoring dashboard

Data processing unit/server

Health assessment report for caregiver/nurse

Technology

Sensor-robot ecosystem

- Wrist-worn wearable devices continuously measure skin temperature and heart rate
- Stationary sensors acquire EKG, EEG, EDA, EMG, SpO2 in interval measurements
- 3. Through conversation with the social robot Pepper (SoftBank Robotics) and use of PROMs, the subjective well-being of the user is determined
- Data is visualized in health monitoring dashboard, user/caregiver is notified when data is alarming
- 5. Data is collected and processed in data processing unit

TH Köln, Cologne, Germany

6. Health assessment report is generated for caregiver/nurse

Sensor-robot ecosystem

PROM data

- Use of patient-reported outcome measures (PROMs)
- Elderly person answers questions regarding health and well-being in conversation with social robot
- Subjective health data is acquired

Health Assessment Report

Combination of objective
 PROM data and subjective
 sensor data allows generating
 a health assessment report for
 both elderly person and
 caregiver

Sensor data

- Continuous measurement of temperature, heart rate
- Interval measurements of EKG, EEG, EDA, EMG, SpO2
- Objective health data is acquired

Page 6

Results

Example of health monitoring dashboard

- → Generated using ThingsBoard¹
- Heart rate (optical measurement) and skin temperature are continuously measured using a wrist-worn device and are visualized in real time
- 2. EKG is visualized when it is acquired in interval measurements, can be used to determine heart health, can also be sent to nurse/doctor
- 3. Historical data can be selected for visualization
- → To visualize data of other sensors, additional widgets can be created and customized

¹ thingsboard.io

Discussion and Future Work

Proposed architecture provides basis for integration of sociotechnical perspective into development of sensor-robot ecosystem, by answering the following research questions:

- 1. Which are the most important PROMs and sensors to detect specific health and care situations? How individually different is this?
- 2. (How) can we combine PROMs and different sensors to increase the quality of care of elderly users in their homes?
- 3. In which way, if at all, does this combination reduce the burden of care of both the elderly users and their caregivers (both trained and untrained)?
- 4. To which degree can these **results be transferred** to **other age groups** and **care situations** (e.g. nursing homes)?
- → By integrating users in development of ecosystem, mentioned concerns (privacy, trust, added value of technologies) can be addressed and alleviated Future work:
- Integrate more sensors into ecosystem, e.g. for fall detection, activity monitoring, emotion recognition, on-wrist blood pressure measurement
- Test robustness of system through long-term measurements in realistic settings
- Investigate how well system works, when **only user** interacts with it → **reduce maintenance** and ensure **long-term user satisfaction**

26.10.20

COLOGNE OBOTSLAB

Questions? Comments? Please get in touch!

Caterina Neef

caterina.neef@th-koeln.de

Anja Richert

anja.richert@th-koeln.de

Cologne Cobots Lab

TH Köln, Cologne, Germany