

The Influence of Plasticizers On Determination of Cationic Surfactants In Pharmaceutical Disinfectants By Direct Potentiometric Surfactant Sensor

Maja Karnaš¹, Marija Jozanović^{2,*}, Bojan Đurin³, **Nikola Sakač^{4,*}**

¹ Faculty of Agrobiotecnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; maja.karnas@fazos.hr
² Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia; mjozanovic@kemija.unios.hr
³ Department of Civil Engineering, University North, Center Varaždin; Croatia; bdjurin@unin.hr
⁴ Faculty of Geotechnical Engineering, University of Zagreb, Varaždin, Croatia; nsakac@gfv.unizg.hr

ECSA-7

7th International Electronic Conference on Sensors and Applications 15 - 30 November 2020

1. Introduction

1. Introduction

- Cationic surfactants are used in broad spectra of commercial products as preservatives and disinfectants.
- Since classical methods for determination of lower surfactant concentrations [1] have many disadvantages, direct potentiometric sensors for surfactants based on ion selective electrodes with liquid membrane type [2][3] offer an elegant, affordable and reliable substitution.

1. Introduction

- Liquid membrane type sensing membranes are typically based on high molecular weight PVC mixed with plasticizer and an ionophore.[4]
- Even though the plasticizer has a function to soften the matrix and make it more flexible, it also has an influence on the final direct potentiometric sensor response [5] since in influences the membrane polarity, resistance, ion mobility across the membrane. [6][7]

1. Introduction

• The typical weight ratio of PVC to plasticizer is 1:2, with up to 1 wt % ionophore:

• Higher amounts of plasticizer could be interfering to the measurement. [8]

AIM

- Previously we synthesized DMI-TPB ion pair, implement it in the PVC-based liquid membrane surfactant sensor and used it for cationic surfactants quantification in real samples. [9]
- In this paper we selected four different plasticizers and implement them in the PVC-based sensing membrane with DMI-TPB as an ionophore to observe the plasticizer influence on the response characteristics of the direct potentiometric surfactant sensor and test the selected membrane formulation on commercial pharmaceutical disinfectants.

2. Materials and Methods

- Surfactant ion selective electrodes (surfactant sensors) are electrochemical sensors able to measure surfactant concentration.
- Principle: direct potentiometry

ullet

• There is a logaritmic dependance between surfactant activity and electrode potential.

2. Materials and Methods

PVC liquid membrane preparation: a) setup, b) cutted membrane discs

CATIONIC SURFACTANTS

- cetylpyridinium chloride (CPC)
- cetrimonium bromide (CTAB)

PLASTICIZERS

- o-nitrophenyl octyl ether (P1)
- bis(2-ethylhexyl) phthalate (P2)
- bis(2-ethylhexyl) sebacate (P3)
- dibutyl sebacate (P4)

ION PAIR

1,3-didecyl-2methylimidazoliumtetraphenylborate (DMI-TPB) Surfactant sensor with implemented membrane disc on the bottom of the electrode

SIX REAL SAMPLES OF PHARMACEUTICAL DISINFECTANTS PROVIDED BY THE LOCAL STORE

3. Results and Discussion

3.1. Response characterization

Figure 1. Influence of the plasticizer type on the DMI-TPB surfactant sensor response characteristics toward cationic surfactants: a) CPC (left) and b) CTAB (right), in deionized water. Plasticizers, from top to bottom: 2-nitrophenyl octyl ether (P1), bis(2-ethylhexyl) phthalate (P2), bis (2-ethylhexyl) sebacate (P3), and dibutyl sebacate (P4). The curves have been shifted vertically for clarity.

3. Results and Discussion

3.2. Direct potentiometric titrations

Figure 2. Direct potentiometric titration curves for a) CPC ($c=4 \times 10^{-3}$ M) and b) CTAB; with DS ($c=4 \times 10^{-3}$ M) obtained by the use of DMI-TPB sensor and for different plasticizers, from left to right: 2-nitrophenyl octyl ether (P1), bis(2-ethylhexyl) phthalate (P2), bis (2-ethylhexyl) sebacate (P3) and dibutyl sebacate (P4). The curves have been shifted vertically for clarity.

3. Results and Discussion

3.3. Titration of pharmaceutical disinfectants

- The DMI-TPB sensor containing plasticizer P1 was selected as an end-point indicator in potentiometric titration of cationic surfactants in six commercial pharmaceutical disinfectants since it presented the best characteristic.
- The standard solution of anionic surfactant DS ($c=4 \times 10^{-3}$ M) was used as a titrant. PVC liquid membrane Direct Potentiometric Surfactant Sensor (DPSS) was used as a reference [10].
- For determinations in six disinfectant samples, no significant differences were observed between the means of both the DMI-TPB sensor containing plasticizer P1 and the DPSS at the 95% confidence level.
- A sufficient well agreement was observed for all results (Table 1).

3. Results and Discussion

3.3. Titration of pharmaceutical disinfectants

Table 1. The results of potentiometric titrations of cationic surfactants in pharmaceutical disinfectants by DS (c = 4 mM) as titrant and a DMI-TPB sensor containing plasticizer P1 as an indicator, in comparison with the results obtained with referent Direct Potentiometric Surfactant Sensor (DPSS).

	ANIONIC SURFACTANT CONTENT ¹			
Product	DMI-TPB sensor with P1		DPSS ²	
	%	RSD (%)	⁰∕₀	RSD (%)
Α	4.3223	0.91	4.2483	0.93
В	5.1313	0.62	5.3013	0.64
С	4.7646	0.72	4.7021	0.67
D	4.7222	0.88	4.5819	0.93
Ε	0.0684	0.35	0.0672	0.36
F	0.1494	0.25	0.1502	0.27

¹ Average of 5 determinations

² DPSS described in ref. [10]

4. Conclusion

- Four different plasticizers were incorporated into the PVC-based liquid membrane surfactant sensors with DMI-TPB as an ionophore.
- Membranes were characterized by their response on cationic surfactant CPC and CTAB, and direct potentiometric titrations of CPC and CTAB with anionic surfactant DS as a titrant.
- Sensor membrane containing plasticizer 2-nitrophenyl octyl ether (P1) showed the best properties and was used for titration of six pharmaceutical disinfectants obtained from the local store.
- The results of showed good agreement with conventional reference direct potentiometric sensor developed previously by the same group.

References

- 1. Frend, A.J.; Moody, G.J.; Thomas, R.; Birch, B.J. Flow injection analysis with tubular membrane ion-selective electrodes in the presence of anionic surfactants. *Analyst* **1983**, *108*, 1357–1364. DOI: 10.1039/AN9830801357
- 2. Sakač, N.; Jozanović, M.; Karnaš, M.; Sak-Bosnar, M. A New Sensor for Determination of Anionic Surfactants in Detergent Products with Carbon Nanotubes as Solid Contact. *J. Surfactants Deterg.* **2017**, 1–9. DOI: 10.1007/s11743-017-1978-0
- 3. Sak-Bosnar, M.; Madunić-Čačić, D.; Sakač, N.; Galović, O.; Samardžić, M.; Grabarić, Z. Potentiometric sensor for polyethoxylated nonionic surfactant determination. *Electrochim. Acta*, **2009**, *55*, 528–534. DOI: 10.1016/j.electacta.2009.09.010
- 4. Zareh, M.M. Blank membranes versus ionophore-based membranes for the selective determination of H⁺. *Anal. Sci.*, **2009**, *25*, 1131–5. DOI: 10.2116/analsci.25.1131
- 5. Guilbault, J.D.R.T.G.G.; Durst, R.A.; Frant, M.S.; Freiser, H.; Hansen, E.H.; Light, T.S.; Pungor, E.; Rechnitz, G.; Rice, N.M.; Rohm, T.J.; Simon, W. Recommendations for nomenclature of ion-selective electrodes. *Pure Appl. Chem.*, **1976**, *48*, 127–132.
- 6. Karnaš, M.; Sakač, N.; Jozanović, M.; Tsakiri, M.; Kopriva, M.; Kovač Andrić, E.; Sak Bosnar, M. The influence of plasticisers on response characteristics of anionic surfactant potentiometric sensor. *Int. J. Electrochem. Sci.*, **2017**, *12*, 5921 5933. DOI: 10.20964/2017.07.16
- 7. Zahran, E.M.; New, A.; Gavalas, V.; Bachas, L.G. Polymeric plasticizer extends the lifetime of PVC-membrane ion-selective electrodes. *Analyst*, **2014**, *139*, 757–63. DOI: 10.1039/c3an01963b
- 8. Carey, C. Plasticizer Effects in the PVC Membrane of the Dibasic Phosphate Selective Electrode. *Chemosensors*, **2015**, *3*, 284–294. DOI: 10.3390/chemosensors3040284
- 9. Madunić Čačić, D.; Sak-Bosnar, M.; Galović, O.; Sakač, N.; Matešić-Puač, R. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor. *Talanta*, **2008**, *76*, 259–264. DOI: 10.1016/j.talanta.2008.02.023
- Sakač, N.; Karnaš, M.; Jozanović, M.; Medvidović-Kosanović, M.; Martinez, S.; Macan, J.; Sak-Bosnar, M. Determination of anionic surfactants in real samples using a low-cost and high sensitive solid contact surfactant sensor with MWCNTs as the ion-to-electron transducer. *Anal. Methods*, 2017, 9, 2305–2314. DOI: 10.1039/C7AY00099E

Thank you for your attention!