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Abstract: The temporal evolution of individual grip force profiles of a novice using a robotic system 

for minimally invasive endoscopic surgery is analyzed on the basis of thousands of individual 

sensor data recorded in real time through a wearable wireless sensor glove system. The spatio-

temporal grip force profiles from specific sensor locations in the dominant hand performing a four-

step pick-and-drop simulator task reveal skill-relevant differences in force deployment by the small 

finger (fine grip force control) and the middle finger (gross grip force contribution) by comparison 

with the profiles of a highly proficient expert. Cross-disciplinary insight from systems neuroscience, 

cognitive behavioral science, and robotics, with implications for biologically inspired AI for human-

robot interaction, highlight the functional significance of spatio-temporal grip force profiling. 
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1. Introduction 

Wearable wireless sensor systems are currently developed for the monitoring of health data, 

exercise activities, and other performance data. Unlike conventional approaches, such devices enable 

the convenient, continuous, and unobtrusive monitoring of a user’s behavioral signals in real time. 

In previous work [1,2], we have used a wireless sensor glove system for human-robot interaction 

within a system prototype designed for minimally invasive endoscopic surgery. Functionally 

motivated analyses of thousands of human grip force data, collected from various sensor locations in 

the dominant and non-dominant hands of experts, trainees, and novice surgeons in image-guided 

task simulations, have shown specific differences between the grip force profiles of individual users 

as a function of task skill level and expertise in using the robotic system. Experts and non-experts 

employ different grip-force strategies reflected by differences in total amount of grip force deployed 

by the same fingers of the same hand. Here in this work, we show further functional analyses of 

thousands of individual grip force data leading the way towards task-specific grip force monitoring 

in real time, as clarified in the discussion further below. Task specific sensor data from a complete 

novice and a highly proficient expert user are exploited here in terms of spatio-temporal variations 

in average grip force, computed on the basis of data recorded from three task-relevant sensor 

locations in the dominant hand: (1) the middle phalanx of the middle finger, which mostly contributes 

to gross force deployment [3,4,5], necessary for lifting weighty objects but useless for skillful 

execution of the robotic precision task here, (2) the middle phalanx of the small finger, which allows 
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for fine grip force control [3–6], critically important in subtle precision grip tasks like the one studied 

here, and (3) the middle phalanx of the ring finger, which is among the least important in grip force 

control across a variety of tasks and weights lifted, as discussed previously [3–6]. The spatio-temporal 

grip force profiles of the novice and the expert are compared across ten successive task sessions for 

repeated execution of the pick-and-drop robotic simulator task with four critical steps: 

1. Activate and move tool towards object location; requires movement ahead in depth along a 

virtual z-axis in 2D image plane 

2. Open and close tool-tip grippers to grasp and lift object 

3. Move tool with object to target location; requires lateral movement along x-axis of 2D image 

plane 

4. Open tool-tip grippers to drop object in box. 

To accomplish these steps in minimal task time and with maximal precision (i.e., no tool 

trajectory corrections, no incidents) requires skillful manipulation of the task-relevant (left or right) 

handle of the robotic system (see Materials and Methods). The novice’s dominant hand is the right 

hand, the expert’s dominant hand is the left hand. 

2. Materials and Methods 

The robotic system is designed for bi-manual endoscopic surgical interventions; the simulator 

task from this study here solicits only one, in the present case the dominant hand. 

2.1. Slave Robotic System  

The slave robotic system is built on the Anubis®  platform of Karl Storz and consists of three 

flexible, cable-driven sub-systems for robot-assisted endoscopic surgery, described in detail in our 

previous work [1] available at: https://www.mdpi.com/1424-8220/19/20/4575/htm. 

2.2. Master/Slave Control  

The slave robot is controlled at the joint level by a position loop running at 1000 Hz on a central 

controller. The master side consists of two specially designed interfaces, which are passive mobile 

mechanical systems. Each of the two handles has 3 DoF, which translate for controlling instrument 

insertion, rotate around a horizontal axis for controlling instrument rotation, and rotate around a 

final axis (moving with the previous DoF) for controlling instrument bending. Each handle is also 

equipped with a trigger and with a small four-way joystick for controlling additional DoF. In the 

experiments here, the trigger is operated with the index finger of a given hand for controlling grasper 

opening and closing.  

A high-level controller running in real-time Linux OS communicates with the master interfaces 

and provides reference positions to the slave central controller. The user sits in front of the master 

console and looks at the endoscopic camera view displayed on the screen in front of him/her at a 

distance of about 80 cm while holding the two master handles, which are about 50 cm away from 

each other. Seat and screen heights are adjustable to optimal individual comfort. The two master 

interfaces are identical and the two slave instruments they control are also identical. Therefore, for a 

given task the same movements need to be produced, whatever hand the user is instructed to use 

(left or right). The master interfaces are statically balanced and all joints exhibit low friction; therefore, 

only minimal forces are required to produce significant movement in any direction. A snapshot view 

of a user wearing the sensor gloves while manipulating the system is shown in Figure 1a; Figure 1b 

shows directions and types of tool-tip and control movements. 
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Figure 1. Expert wearing the sensor gloves while manipulating the robotic master/slave system-(a). 

Direction and type of tool-tip and control movements-(b). 

2.3. Sensor Glove Design  

The robotic system having its own grip style design, a specific wearable sensor glove system 

with inbuilt Force Sensitive Resistors (FSR) was developed, one for each hand. 

2.3.1. Hardware  

The gloves designed for the study each contain twelve FSR, in contact with twelve specific 

locations on the inner surface of the hand [1,2], including those three for which data are shown here. 

Two layers of cloth were used and the FSR were inserted between the layers. The FSR were sewn to 

the cloth around the conducting surfaces (active areas) and did not interact, neither directly with the 

skin of the subject, nor with the master handles, which provided a comfortable feel when 

manipulating the system. FSR with a needle and thread. The electrical connections of the sensors are 

individually routed to the dorsal side of the hand and brought to a soft ribbon cable, connected to a 

small and very light electrical casing, strapped onto the upper part of the forearm and equipped with 

an Arduino microcontroller. Each FSR was soldered to 10KΩ pull-down resistors to create a voltage 

divider, and the voltage read by the analog input of the Arduino is given by (1) 

𝑉𝑜𝑢𝑡 = 𝑅𝑃𝐷𝑉3.3/(𝑅𝑃𝐷 + 𝑅𝐹𝑆𝑅) (1) 

where 𝑅𝑃𝐷 is the resistance of the pull down resistor, 𝑅𝐹𝑆𝑅 is the FSR resistance, and 𝑉3.3 is the 3.3 V 

supply voltage. FSR resistances can vary from 250 Ω when subject to 20 Newton (N) to more than 

10MΩ when no force is applied at all. The generated voltage varies monotonically between 0 and 3.22 

Volt, as a function of the force applied, which is assumed uniform on the sensor surface. In the 

experiments here, forces applied did not exceed 10N, and voltages varied within the range of [0; 1500] 

mV. The relation between force and voltage is almost linear within this range. It was ensured that all 

sensors havesimilar calibration curves. Thus, all following comparisons are directly between voltage 

levels at the millivolt (mV) scale. Regulated 3.3 V is provided to the sensors from the Arduino, and 

power is provided by a 4.2 V Li-Po battery enabling wireless use of the glove system. The battery 

voltage level is controlled during the whole duration of the experiments by the Arduino, and 

displayed continuously on the user interface. The glove system is connected to a computer for data 

storage via Bluetooth-enabled wireless communication running 115,200 bits-per-second (bps). 

2.3.2. Software 

The software of the glove system is divided into two parts: one running on the gloves, and one 

running on the computer algorithm for data collection. Each of the two gloves is sending data to the 

computer separately, and the software reads the input values and stores them on the computer 

according to header values indicating their origin. The software running on the Arduino is designed 

to acquire analog voltages provided by the FSR every 20 milliseconds (msec) at a 50 Hz rate. In every 

loop, input voltages are merged with their time stamps and sensor identification. This data package 

is sent to the computer via Bluetooth. 
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3. Results 

The raw data from three (see Table 1) of the twelve sensor locations in the dominant hands of 

the novice and the expert were analyzed.  

Table 1. Task-relevant sensor locations (dominant hand) from which the spatio-temporal grip force 

profiles shown here were drawn. 

Sensor  Finger  Anatomical Reference  

S5  Middle Middle Phalanx 

S6  Ring Middle Phalanx 

S7  Pinky Middle Phalanx 

Individual temporal grip force profiles were plotted in terms of average peak amplitudes (AmV) 

for fixed successive temporal windows of 2000 ms in a given individual session. With one signal per 

20 ms and 100 signals per time window of 2000 ms, we have AmV = mVtotal/100, which is the total 

sum of mV recorded in the time window given divided by the total number of signals in the time 

window. Figure 2 shows these profiles for the first and the last individual sessions for sensors 5, 6, 

and 7. 

 

Figure 2. Individual grip force profiles showing average peak amplitudes (mV) from sensors 5, 6, and 

7 for fixed successive temporal windows of 2000 milliseconds in a given session, for the first and last 

of ten sessions of the expert and the novice. Relative durations of each of the four critical task steps 

within a given session are highlighted by the colored squares. 

Statistical comparison (2-Way ANOVA) between the original raw data of expert and novice from 

their first and last task sessions reveal significant interactions between the ‘expertise’ (2 levels) and 

‘session’ (2 levels) factors for all three sensors considered here (S5, S6, S7). For sensor S5 on the middle 

finger (gross grip force deployment), the mean (m) grip forces and their standard errors (sem) from 

the first session yield m = 241 mV/sem = 4.3 for the expert and m = 790 mV/sem = 2.7 for the novice, 

showing that the latter deploys about three times as much unnecessary gross grip force by 

comparison with the expert. This expertise-specific difference in proportional gross grip force 

deployed by the middle finger is even larger in the last session, with m = 78 mV/sem = 4.9 for the 



Eng. Proc. 2020, 1, FOR PEER REVIEW 5 

 

expert, and m = 640mV/sem = 3.6 for the novice. The interaction between the ‘expertise’ and ‘session’ 

factors for sensor S5 is significant with F(1,2880) = 28.65; p < 0.001. For sensor S6 on the ring finger (no 

meaningful role in grip force control), the differences between the grip force profiles of novice and 

expert are minimal, as would be expected, in the first session with m = 576mV/sem = 3.8 for the expert 

and m = 504mV/sem = 2.4 for the novice, and in the last session with m = 474mV/sem = 4.5 for the expert 

and m = 445mV/sem = 3.3 for the novice. The interaction between the ‘expertise’ and ‘session’ factors 

for sensor S6 is, however, significant with F(1,2880) = 35.86; p < 0.001, which is explained by the fact 

that grip forces, i.e. amplitudes in mV, diminish in both users from the first to the last session, but not 

by the same amounts. For sensor S7 on the small finger (critically important for fine grip force 

control), the expertise-specific difference between the two user profiles is characterized by the novice 

deploying largely insufficient grip forces, from the first session with with m = 98mV/sem = 1.2 to the 

last with m = 78mV/sem = 1.6, while the expert produces sufficient grip force for fine movement control 

from the first session with m = 594mV/sem = 1.8 to the last with m = 609mV/sem = 2.2. The interaction 

between the ‘expertise’ and ‘session’ factors for sensor S7 is highly significant with F(1,2880) = 188.53; 

p < 0.001. Task times are considerably shorter in the expert (Figure 2), with 10.4 s in the first session 

and 7.6 sec in the last indicating a minor practice effect. The novice takes more than twice as long (26 

s) in the first session compared with the expert, with a 30% time gain in the last session (18.8 s), 

indicating a temporal training effect. Concerning incidents (trajectory adjustments, grip failures, drop 

misses), the task videos reveal a total number of 20 in the novice, and only three small trajectory 

adjustments in the expert’s performance. 

4. Discussion 

The data reveal expertise-specific differences in the spatio-temporal grip force profiles of an 

expert and a novice repeatedly performing a 2D image-guided robot-assisted precision task. These 

differences can be functionally assessed under the light of previous work [3–6] on the role of finger 

grip forces and prehensile synergies, centrally controlled in the human brain for optimizing human 

motor performance and control. One major difference as a function of task expertise or skill concerns 

proportional gross grip force deployed by the middle finger, with the novice deploying way too much 

unnecessary, task-irrelevant gross grip force, while the expert has learnt to skillfully minimize those. 

Another functionally important, expertise-specific difference concerns precision grip force control by 

the small finger, critically important in surgical and other precision tasks. Here, the difference 

between the two users is characterized by the novice deploying insufficient grip forces, with no major 

evolution between the first and the last task sessions. Concerning grip forces deployed by the ring 

finger, which plays no major or meaningful role in grip force control, differences between grip force 

profiles of novice and expert are, indeed and as would be expected, minimal and do not change much 

across sessions although total grip force magnitudes (mV amplitude) diminishes across sessions in 

both users. At the beginning, the novice takes more than twice as long performing the precision task 

by comparison with the expert, but at the end scores a 30% time gain indicating a considerable 

temporal training effect, especially in the first critical task step, as indicated by the pink boxes in 

Figure 2. This is readily explained by the fact that the first task step is the most difficult for a novice. 

It consists of moving the tool along a virtual trajectory towards the object location, and requires 

movement away from the body in the surgeon’s peri-personal space. This implies the perceptual 

recovery of physically missing depth information along a virtual z-axis in the 2D image plane. Such 

difficulty results in longer task times and imprecise tool-movements [7–10], explaining why the 

largest training gain in total task time of the novice is observed for task step 1. Finally, the analyses 

shown here can be run in real-time to monitor manual/bimanual precision tasks, control performance 

quality, or to prevent risks in robot assisted surgery for systems where excessive grip forces can cause 

tissue damage [11], which does not apply to this system here. The human hand has evolved as a 

function of active constraints in harmony with other sensory systems [12,13]. Grip force profiles are 

a direct reflection of the complex cognitive and behavioral synergies this evolution has produced. 
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