
Proceedings

A time series autoencoder for load identification via
dimensionality reduction of sensor recordings†

Luca Rosafalco 1,∗, , Andrea Manzoni 2, , Alberto Corigliano 1, and Stefano Mariani 1,

1 Dipartimento di Ingegneria Civile ed Ambientale, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano,
Italy; luca.rosafalco@polimi.it

2 MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy;
andrea1.manzoni@polimi.it

* Correspondence: luca.rosafalco@polimi.it
† Presented at the 7th Electronic Conference on Sensors and Applications, 15–30 November 2020; Available

online: https://ecsa-7.sciforum.net/.

Published: 15 November 2020

Abstract: Current progress in sensor technology is setting the ground to push toward satisfactory
solutions to challenging engineering problems, like e.g. system identification and Structural Health
Monitoring (SHM). In civil engineering, SHM is often based on the analysis of vibrational recordings,
represented by time histories of displacements and/or accelerations, collected through pervasive
sensor networks and shaped as Multivariate Time Series (MTS). Despite the great advances in
soft computing techniques like neural networks, inverse problems featuring regression tasks
on raw vibrational measurements are still challenging. Developing dimensionality reduction
tools, able to infer complex correlations within and across the recorded time series, is then of
paramount importance. In this work, we have designed an AutoEncoder (AE) capable of condensing
MTS-shaped data in a reduced format featuring a few latent variables only. The obtained reduced
data representation enhances the solution of inverse problems, like e.g. the identification of the
parameters governing the dynamic load applied to a structural system. Numerical examples, aimed
at the identification of the loading conditions on a shear-type building, are reported to assess the
effectiveness of the proposed procedure.
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1. Introduction

Data collected by pervasive sensor networks have to be processed, since they are usually
unmanageable in their raw forms. Their dimension is the principal obstacle making their use extremely
difficult, while the information content is typically highly redundant. Synthetic features like spectral
peak frequencies, usually exploited when the acquired data are shaped as Time Series (TS), are extracted
to solve engineering tasks, like load identification and Structural Health Monitoring (SHM) [1,2]. Deep
Learning (DL) allows to extract features from data according to the required task, avoiding any
preliminar feature design [3–6]. Among DL techniques, AutoEncoders (AEs) are special type of Neural
Networks (NN) able to obtain a reduced data representation [7], also called latent representation,
without specifying the task the reduced data representation must be used for.

The NN architecture employed by an AE is usually deep or, in other words, involves the use of
multiple sequential transformations. The advantages of employing AEs are manifold: i) no feature
engineering is necessary; ii) the obtained reduced data representation can be used for different tasks;
iii) they provide the most informative data representation by setting the number of latent variables
or, at least, the one that allows to reconstruct data at best. Thanks to their reduced number, latent
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variables are often interpretable, but only at the price of knowing something about what stays behind
the variability of the collected data [8].

In the following, a novel TS AE is proposed for the dimensionality reduction of the
pseudo-experimental Multivariate Time Series (MTSs) recordings related to the displacement response
of a two-storey shear building. The effectiveness of the dimensionality reduction is judged by the AE
ability of reconstructing the input signals from their latent representation. Despite the lack of any a
priori performed task-oriented feature engineering, the obtained reduced data representation allows
the identification of the load conditions applied to the building.

2. Methodology: a deep autoencoder for load identification

A Neural Network (NN) is a collection of units, called neurons. Each neuron performs, in its basic
form, a linear combination of its input V ∈ RL (which reads vb for the AE input channels, see below)
via a weight vector ω, and applies a nonlinear activation function ζ. If a set of L neurons, called layer,
is applied to V , the output becomes a vector U (V , Ω) ∈ RL, where Ω = [ω1, . . . , ωL]. Many layers can
be stacked one after another, making the NN architecture deep.

A special type of NN layer is the convolutional one, which allows to infer correlations within
and across the inputs, whenever the inputs are shaped as a collection of one-dimensional arrays.
In this work, the inputs are a set of MTSs v = [v1, . . . , vN ] ∈ RL×N acquired by a sensor system
employing N sensors, and sampling L displacement recordings within a time interval (0, T). The
output U (V, Ω) = [u1, . . . , uNout ] of a one-dimensional convolutional layer then reads

un (V, Ωn) =
N

∑
b=1

ωb
n ∗ vb, n = 1, . . . , Nout, (1)

where: ∗ :
(
RHout ×RL)→ RL is the discrete convolution operator [9]; Ωn =

[
ω1

n, . . . , ωN
n
]
∈ RHout×N

are the weights applied to vb (with b = 1, . . . , N); Ω = [Ω1, . . . , ΩNout ] ∈ RHout×N×Nout
collects all the

layer weights; Hout is the kernel dimension; N also represents the number of channels of the input
layer; Nout is the number of channels of the output layer.

One-dimensional convolutional layers are the building blocks of the proposed AE. This latter
is composed by an encoder enc and by a decoder dec. The encoder maps the input V into a latent
representation z = z (V) ∈ RP, with P� (L× N), while the decoder maps z into a two dimensional
array U = U (z) ∈ RL×N . Being U shaped as V, we can enforce the AE to reconstruct V from z by
defining

c (V, U) =
L

∑
l=1

N

∑
n=1

(vln − uln)
2 , (2)

as loss function to be minimised by the NN during the training, which consists in tuning the weights
Ω ruling the layer operations.

The latent representation z can be used to solve a regression problem, involving the identification
of the parameter vector η ∈ RQ e.g. governing the loadings applied to the structure. If the decoder can
(almost perfectly) reconstruct V starting from z, it means that z condenses all the relevant informations
of V. As shown in Figure 1, a NN-based regression model r is employed to retrieve η starting from
z, accomplishing this way the load identification task. To train r, a loss function cr (η, ur) is defined
as done in Eq. (2), where ur ∈ RQ is the prediction of r. The training of the AE and of r takes place
sequentially, first minimising c (V, U), and then minimising cr (η, ur). A popular first-order stochastic
gradient descend algorithm, called Adam [10], has been employed for these procedure tasks.

3. Results and discussion

The lateral displacements of a two-storey building, shown in Figure 2, are monitored by a
sensor system employing two sensors (one per floor), recording L samples within the time window
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V = [v1, . . . , vN ]
∈ RL×N z ∈ RP U = [u1, . . . , uN ]

∈ RL×N

TS AE

ur ∈ RQ

minimise
c (V , U)

minimise
cr (η, ur)

enc dec

r

Figure 1. Proposed procedure for the regression of η on z. First (black part), the AE is trained by
minimising c (V, U); next (orange part), r is trained by miminising cr (η, ur).

(0, T). Then, the output of the monitoring system is an MTS V ∈ RL×N , with L = 250 and N = 2.
The dynamic response of the structure is simulated by means of a two-dimensional shear building
model wherein, due to the mass distribution and load bearing elements, torsional effects have been
disregarded. Damping has not been modelled, having a negligible effect on the identification of
continuously excited structures [11,12]. We have assumed that the applied lateral loads consist of
forces enforced at the floor levels, featuring a sinusoidal time dependence, ruled by the parameter
φ, and a linearly increasing amplitude along the building height, governed by the parameter α, i.e.
hξ = 0.5ξαsin (2πφt) with ξ = 1, 2. Therefore, the parameter vector η = {α, φ} looks sufficient to
fully describe the loading conditions. A uniform probability density function has been associated to
each parameter: Uα (α) =

1
(6.25−0.625)103N for α, and Uφ (φ) =

1
(15−1)Hz for φ. Regarding the structural

properties of the building, the same values of mass m = 625 ton and interstory stiffness k = 106 kN
m

have been assumed for the two floors. Consequently, the resonance frequencies of the building are
fstr = [3.93, 10.3] Hz, while the structural periods are Tstr =

[
0.255, 97.1 · 10−3] s.
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Figure 2. Two-storey building: applied load and monitored displacements.
A dataset, collecting 12, 000 MTSs, has been assembled to train the AE and r; 4000 additional

MTSs, forming the validation set, have been then employed to avoid overfitting. The training dataset
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is processed several times, or epochs. If the loss function computed with the validation set has not
reduced for 50 epochs in a row, the training has been early stopped. A test set, gathering 512 MTSs,
has been then employed to verify the reconstruction capacity of the AE, and the performance of the
proposed load identification procedure. The reconstruction capacity has been evaluated through
two error measures, employing either a standardised L2 norm or a standardised L∞ norm. The error
measures have been computed for each reconstructed signal, and standardisation has been done by
dividing the reconstruction error (either the L2 or L∞ norm) by the standard deviation of the original
signal. Without standardisation, small inaccuracies in reconstructing large displacements would have
counted more than large inaccuracies at smaller scales.

A thorough investigation has been carried out to study how the number P of latent variables and
the parameter φ ruling the time dependence of loading, affect the reconstruction capacity of the AE;
the other way around, no correlation between the reconstruction error and α has been found in our
experiments. Indeed, the mean value and the spread of the reconstruction error can not be modelled as
a function of α, but rather as a function of φ. Figures 3 and 4 depict the reconstruction error measured,
respectively, by the standardised L2 and L∞ norms, when the input signals have been taken from the
test set. The graphs for P = 5 (not reported for brevity) are analogous to those obtained for P = 6,
even if showing slightly higher values of the reconstruction error. An increasing value of P does not
lead to a monotonic enhancement of the AE reconstruction capacity, despite the intuition that a larger
latent space should make reconstruction easier. Indeed, even if increasing the value of P has not led to
retain more information on the system, we do expect that a more redundant representation should not
be detrimental.

A clear relation between the error and φ can be underlined. Looking at the standardised L2

norm, the reconstruction capacity of the AE seems worse when φ ≈ f str
1 and φ ≈ f str

2 . This result is
not surprising: the beats produced in the displacement recordings, when φ is close to the structural
frequencies of the building, are additional signal characteristics that the AE must struggle to account
for. Focusing on the standardised L∞ norm, the reconstruction error is still large for φ ≈ f str

2 , while it
gets smaller for φ ≈ f str

1 . In Figure 5, a qualitative assessment of the reconstruction capacity of the AE
is reported, to better highlight the meaning of the two error norms: the good signal reconstruction
obtained for φ / f str

1 points toward the L∞ norm as a more appropriate error measure. On the other
hand, we are convinced that both these error measures give meaningful information, because the
standardised L2 norm addresses inaccuracies in reproducing the frequency content of the input signal,
while the standardised L∞ norm highlights the inability of catching its peaks. Still referring to Figure 5,
we observe that the amplitude of the signal in Figure 5a is an order of magnitude greater than the one
in Figure 5b, despite α = 702 N in the first case, and α = 4341 N in the second case. The reason is that
we are exciting an undamped dynamic system with φ closer to f str

1 in Figure 5a than to f str
2 in Figure

5b.
On the basis of the obtained latent representation z, we have performed the regression of the

parameters η governing the loading conditions. As shown in Figure 6b, the regression of the load
frequency φ has been rather successfully accomplished: the graph has been obtained with the latent
space dimension featuring the highest reconstruction capacity, linked to P = 4. An analogous result
has been obtained for the regression of the load amplitude α, shown in Fig. 6b, confirming that
the proposed strategy, involving dimensionality reduction of the input and the use of a regression
model, allows a correct load identification for the case at hand. It is also worth mentioning that the
largest errors in the φ prediction have been obtained for the frequency range featuring the highest
reconstruction error in the L∞ norm.

4. Conclusions

The use of a time series autoencoder has been proposed for the dimensionality reduction of
sensor recordings, typically acquired for the SHM of civil structures. Thanks to the obtained latent
representation, the regression of the parameters governing the loading conditions can be successfully
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Figure 3. Effects of φ and P on the signal reconstruction error, which is measured via the
standardised L2 norm and is computed with the second floor displacements belonging to the test
set.

carried out. Two error norms have been used to quantitatively assess the signal reconstruction capacity
of the autoencoder, evaluated for different dimensions of the latent space. The capability of the
autoencoder to reconstruct the input signals has been assessed also qualitatively, through comparison
of the input and reconstructed signals in the less accurate cases.

In future works, we aim to understand the role of the latent space dimension on the autoencoder
reconstruction capacity, and to investigate how to set it automatically and optimally.

Acknowledgments: The authors warmly thank Matteo Torzoni for sharing valuable discussions about several
aspects of this research.
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Figure 4. Effects of φ and P on the signal reconstruction error, which is measured via the
standardised L∞ norm and is computed with the second floor displacements belonging to the test
set.
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Figure 5. Reconstructed signal (orange lines) using P = 4 and input signal (grey lines) belonging
to the test set, for (a) φ / f str

1 and (b) φ / f str
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