

A COMBINED MODEL-ORDER REDUCTION AND DEEP LEARNING APPROACH FOR STRUCTURAL HEALTH MONITORING UNDER VARYING OPERATIONAL AND ENVIRONMENTAL CONDITIONS

Matteo Torzoni1,*, Luca Rosafalco ${ }^{1}$, Andrea Manzoni²

1 Dipartimento di Ingegneria Civile ed Ambientale, Politecnico di Milano, Italy;
${ }^{2}$ MOX, Dipartimento di Matematica, Politecnico di Milano, Italy;

* Correspondence: matteo.torzoni@polimi.it
$\bigcirc \bigcirc$

METHODOLOGY
$\bigcirc \bigcirc \bigcirc$
$\bigcirc \bigcirc$

GENOA (ITALY) 14/08/18, PARTIAL COLLAPSE OF THE MORANDI BRIDGE - 43 PEOPLE KILLED

$\bigcirc \bigcirc \bigcirc$
\bigcirc

MIAMI (FLORIDA, USA) 15/03/18, cOLLAPSE OF A PEDESTRIAN FOOTBRIDGE - 6 PEOPLE KILLED

Health monitoring under varying operational and environmental conditions

Sensor system recordings

Structural Health Monitoring (SHM)

Damage detection, localization and quantification

Sources of operational variability: Sources of environmental variability:

- Ioad condition;
- load amplitude.
- wind;
- humidity;
- temperature
 expansion/contraction effect; softening/stiffening effect.

The Alamosa Canyon Bridge: $1^{\text {st }}$ mode shape of one span of the Alamosa Canyon Bridge during two times of the day: morning (7.75 Hz); afternoon $(7.42 \mathrm{~Hz})$.

ObJECTIVE: DAMAGE LOCALIZATION UNDER VARYING OPERATIONAL AND ENVIRONMENTAL CONDITIONS

1. Simulation Based Classification: the problem is traced back to train a classifier on the basis of numerical data.

From reality to high fidelity FE modeling

2. Damage: local stiffness reduction of predefined subdomains assumed fixed within the observation interval: linear behavior.

| 关 Ω_{1} | Ω_{2} | Ω_{3} |
| :--- | :--- | :--- | :--- |

3. Thermo-meccanical effects are also simulated.

4. Processed data: vibrational signals shaped as multivariate time series and temperature measurements, both mimicking the recordings of a pervasive sensor system.

OFFLINE-ONLINE DECOMPOSITION

FCN-BASED CLASSIFIER

$>$ The Dataset includes instances of each considered damage state for several operational/thermal conditions.

Training phase: the classifier learns the mapping \{input instance $\} \Rightarrow$ associated label (damage state) $\}$.
Testing phase: the classifier should map unseen instance into the current damage condition.

Full Order Model and Reduced Order Model

> Modeling hypoteses:

* thermo-elasticity linear theory with a one-way approach;
* temporal dependence of the thermal field is neglected;
* damping effects are disregarded;
* local dependency of the stiffness matrix on the material temperature;
* damage as a selective reduction ($5 \% \div 25 \%$) in stiffness, fixed in time.
$>$ The dataset construction is accelerated exploiting the ROM:
* The ROM relies on the Reduced Basis method;
* The projection bases are built via Proper Orthogonal Decomposition.

| Projection bases for the
 thermal problem | Projection bases for the mechanical problem |
| :---: | :---: | :---: | :---: |

NUMERICAL CASE STUDY

[^0]
NUMERICAL CASE STUDY

Accuracy: 81.48\%

Ω_{0}	50.0\%	0.0% 0	8.3\%	8.3\%	0.0% 0	0.0% 0	33.3% 4	0.0% 0	0.0% 0
Ω	8.3\%	100.0\%	0.0\%	33.3\%	0.0\%	0.0\%	0.0\%	0.0\%	8.3\%
Ω_{1}	1	12	0	4	0	0	0	0	1
Ω	33.3\%	0.0\%	91.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
2	4	0	11	0	0	0	0	0	0
\sim	0.0\%	0.0\%	0.0\%	58.3\%	0.0\%	0.0\%	16.7\%	0.0\%	0.0\%
$\underset{\sim}{\sim}$	0	0	0	7	0	0	2	0	0
-	8.3\%	0.0\%	0.0\%	0.0\%	100.0\%	0.0\%	0.0\%	0.0\%	0.0\%
,	10\%	0	${ }_{0}^{0} 0$	${ }_{0}^{0}$	12\%	0	${ }_{0}^{0} 0$	0	8.3\%
$\stackrel{\square}{\square} \Omega$	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%	0.0\%	0.0\%	8.3\%
	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	12 0.0%	0 50.0%	0 0.0%	0.0\%
Ω_{6}	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	0.0% 0	50.0\%	0.0% 0	0.0% 0
	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%	0.0\%
Ω_{7}	0	0	0	0	0	0	0	12	0
Ω	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	83.3\%
	0	0	0	0	0	0	0	0	10
	Ω_{0}	$\Omega 1$	Ω_{2}	$\Omega 3$	Ω_{4}	Ω_{5}	$\Omega 6$	Ω_{7}	Ω_{8}

Target Class

Conclusions

$>$ We have proposed a data-based strategy for SHM under varying operational and environmental conditions, integrating model-order reduction and deep learning.
$>$ The damage localization task has been performed by making use of vibrational and temperature measurements.
$>$ A database of synthetic recordings has been built offline for a set of predefined damage conditions.
$>$ A reduced order model has been exploited to accelerate the dataset construction.
> A DL-based classifier has been adopted to perform the automatic features extraction and to relate raw sensor measurments to structural health conditions.
$>$ The classifier has achieved a global accuracy of about 81.5\%, which is a very good result in the light of the heterogeneity of the explored conditions and of the damage level variability.

THANK YOU FOR YOUR ATTENTION!

Matteo Torzoni1,*, Luca Rosafalco ${ }^{1}$, Andrea Manzoni²
${ }^{1}$ Dipartimento di Ingegneria Civile ed Ambientale, Politecnico di Milano, Italy;
${ }^{2}$ MOX, Dipartimento di Matematica, Politecnico di Milano, Italy;

* Correspondence: matteo.torzoni@polimi.it

Fully coupled problem

- Onset of a volumetric deformation for a temperature variation.
- Onset of internal heat for a variation of the volumetric deformation.

Simplifying hypotheses

- Small strain rate: one-way coulping approach.
- Short monitoring windows: stationary thermal problem.
$+11^{\circ} \mathrm{C}$


```
Algorithm 1 Thermo-Elastic Problem Solution (FOM).
```

Algorithm 1 Thermo-Elastic Problem Solution (FOM).
1: Solve $\mathbf{K}_{\varphi} \varphi=\mathbf{f}_{\varphi} \rightarrow \varphi$
1: Solve $\mathbf{K}_{\varphi} \varphi=\mathbf{f}_{\varphi} \rightarrow \varphi$
2: Solve $\mathbf{K}_{v}(\boldsymbol{\varphi}) \mathbf{v}=\mathbf{G}_{v} \boldsymbol{\varphi} \rightarrow \mathbf{v}_{\varphi}$
2: Solve $\mathbf{K}_{v}(\boldsymbol{\varphi}) \mathbf{v}=\mathbf{G}_{v} \boldsymbol{\varphi} \rightarrow \mathbf{v}_{\varphi}$
3: \mathbf{v}_{φ} assumed as initial condition: $\mathbf{v}_{0}=\mathbf{v}_{\varphi}$
3: \mathbf{v}_{φ} assumed as initial condition: $\mathbf{v}_{0}=\mathbf{v}_{\varphi}$
4: WHILE $t_{p}<t_{L_{S}}$ DO
4: WHILE $t_{p}<t_{L_{S}}$ DO
5: \quad Solve $\mathbf{M}_{v} \ddot{\mathbf{v}}\left(t_{p}\right)+\mathbf{K}_{v}(\boldsymbol{\varphi}) \mathbf{v}\left(t_{p}\right)=\mathbf{G}_{v} \boldsymbol{\varphi}+\mathbf{f}_{v}\left(t_{p}\right)$
5: \quad Solve $\mathbf{M}_{v} \ddot{\mathbf{v}}\left(t_{p}\right)+\mathbf{K}_{v}(\boldsymbol{\varphi}) \mathbf{v}\left(t_{p}\right)=\mathbf{G}_{v} \boldsymbol{\varphi}+\mathbf{f}_{v}\left(t_{p}\right)$
6: END WHILE

```
    6: END WHILE
```


POD BASES CONSTRUCTION ALGORITHM

```
Algorithm 2 POD bases construction
    POD FOR THE COUPLED ELASTO-DYNAMIC PROBLEM
    FOR \(j=1, \ldots, \mathfrak{N}\) DO
    3: \(\quad\) Sample \(\left\{\boldsymbol{\eta}_{u}, \boldsymbol{\eta}_{\phi}, g\right\}_{j}\) via LHS
    Solve \(\left\{\mathbf{K}_{\varphi} \boldsymbol{\varphi}\left(\boldsymbol{\eta}_{\phi}\right)=\mathbf{f}_{\varphi}\left(\boldsymbol{\eta}_{\phi}\right)\right\}_{j} \rightarrow \boldsymbol{\varphi}\left(\boldsymbol{\eta}_{\phi}^{j}\right)\)
    Call \(\left\{\right.\) Algorithm 1\} to Solve \(\left\{\mathbf{M}_{v} \ddot{\mathbf{v}}\left(t, \boldsymbol{\eta}_{u}, \boldsymbol{\eta}_{\phi}, g\right)+\mathbf{K}_{v}\left(\boldsymbol{\eta}_{u}, \boldsymbol{\varphi}, g\right) \mathbf{v}\left(t, \boldsymbol{\eta}_{u}, \boldsymbol{\eta}_{\phi}, g\right)=\ldots\right.\)
                                    \(\left.\mathbf{G}_{v} \boldsymbol{\varphi}\left(\boldsymbol{\eta}_{\phi}\right)+\mathbf{f}_{v}\left(t, \boldsymbol{\eta}_{u}\right)\right\}_{j} \rightarrow \mathbf{v}_{j}\left(t_{p}\right), \quad p=1, \ldots, L_{S}^{R}\)
    Collect \(\mathbf{S}_{v}^{j}=\left[\mathbf{v}\left(t_{1},\left\{\boldsymbol{\eta}_{u}, \boldsymbol{\eta}_{\phi}, g\right\}\right)|\ldots| \mathbf{v}\left(t_{L_{S}^{R}},\left\{\boldsymbol{\eta}_{u}, \boldsymbol{\eta}_{\phi}, g\right\}\right)\right]_{j}\)
    \(\mathbf{W}_{v}^{j}=\operatorname{POD}_{\text {time }}\left(\mathbf{S}_{v}^{j}\right)\)
    IF \(j==1\) THEN
                \(\mathbf{W}_{v}=\mathbf{W}_{v}^{1}\)
        ELSE
            \(\mathbf{S}_{p}=\left[\mathbf{W}_{v} \mid \mathbf{W}_{v}^{j}\right]\)
            \(\mathbf{W}_{v}=\operatorname{POD}_{\text {parameters }}\left(\mathbf{S}_{p}\right)\)
            END IF
    : END FOR
16:
                                    POD FOR THE DIFFUSION PROBLEM
17: Collect \(\mathbf{S}_{\varphi}=\left[\boldsymbol{\varphi}\left(\boldsymbol{\eta}_{\phi}^{1}\right)|\ldots| \boldsymbol{\varphi}\left(\boldsymbol{\eta}_{\phi}^{\mathfrak{Y}}\right)\right]\)
18: \(\mathbf{W}_{\varphi}=\operatorname{POD}\left(\mathbf{S}_{\varphi}\right)\)
```


REDUCED SOLUTION ALGORITHM

```
Algorithm 3 Thermo-Elastic Problem Solution (ROM).
1: Compute \(\mathbf{K}_{\varphi}^{R}=\mathbf{W}_{\varphi}^{\top} \mathbf{K}_{\varphi} \mathbf{W}_{\varphi}, \quad \mathbf{f}_{\varphi}^{R}=\mathbf{W}_{\varphi}^{\top} \mathbf{f}_{\varphi}\)
2: Solve \(\mathbf{K}_{\varphi}^{R} \boldsymbol{\varphi}^{R}=\mathbf{f}_{\varphi}^{R} \rightarrow \boldsymbol{\varphi}^{R}\)
3: Compute \(\boldsymbol{\varphi}=\mathbf{W}_{\varphi} \boldsymbol{\varphi}^{R}\)
4: Compute \(\mathbf{M}_{v}^{R}=\mathbf{W}_{\varphi}^{\top} \mathbf{M}_{v} \mathbf{W}_{\varphi}, \quad \mathbf{G}_{v}^{R}=\mathbf{W}_{\varphi}^{\top} \mathbf{G}_{v}, \quad \mathbf{K}_{v}^{R}=\mathbf{W}_{\varphi}^{\top} \mathbf{K}_{v}(\boldsymbol{\varphi}) \mathbf{W}_{\varphi}, \quad \mathbf{f}_{v}^{R}=\mathbf{W}_{\varphi}^{\top} \mathbf{f}_{v}\)
5: Solve \(\mathbf{K}_{v}^{R}(\boldsymbol{\varphi}) \mathbf{v}^{R}=\mathbf{G}_{v}^{R} \boldsymbol{\varphi} \rightarrow \mathbf{v}_{\varphi}^{R}\)
6: \(\mathbf{v}_{0}^{R}=\mathbf{v}_{\varphi}^{R}\)
7: WHILE \(t_{p}<t_{L_{S}}\) DO
8: \(\quad\) Solve \(\mathbf{M}_{v}^{R} \ddot{\mathbf{v}}^{R}\left(t_{p}\right)+\mathbf{K}_{v}^{R}(\boldsymbol{\varphi}) \mathbf{v}^{R}\left(t_{p}\right)=\mathbf{G}_{v}^{R} \boldsymbol{\varphi}+\mathbf{f}_{v}^{R}\left(t_{p}\right)\)
9: \(\quad\) Compute \(\mathbf{v}\left(t_{p}\right)=\mathbf{W}_{\varphi} \mathbf{v}^{R}\left(t_{p}\right)\)
10: END WHILE
```


Convolutional NeUral Network (CNN)

Inspired by the visual cortex and typically used in computer vision.

[^0]: R. Paolucci et al. Broadband ground motions from 3D physics-based numerical simulations using artificial neural networks. Bulletin of Seismological Society of America, 108, 2018.
 F. Sabetta, A. Pugliese. Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bulletin of the Seismological Society of America, $86,1996$.

