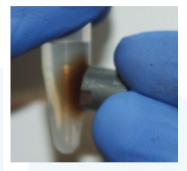
Investigation of Particle Steering for Different Cylindrical Permanent Magnets in Magnetic Drug Targeting

Angelika S. Thalmayer, Samuel Zeising, Georg Fischer and Jens Kirchner

Institute for Electronics Engineering, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg

27. Oktober 2020


TECHNISCHE FAKULTÄT

- Magnetic Drug Targeting
- Fundamentals
- Observed Model
- Results and Discussion
- Conclusion and Outlook

Magnetic Drug Targeting

- New promising cancer treatment
- Cancer-drug is bounded to magnetic nanoparticles
- Particles are pulled into tumor with a magnet
- Enables local chemotherapeutic treatment

Magnetic nanoparticles¹

 \Rightarrow Effectiveness of the treatment depends on a successful navigation of the particles through the cardiovascular system.

¹ H. Unterweger; et al. "Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery," International Journal of Nanomedicine, 5 August 2014.

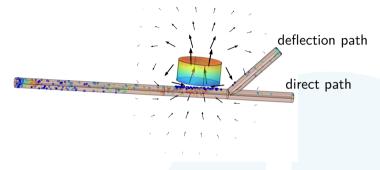
Fundamentals

- Superparamagnetic nanoparticles
- Motion of one particle (Newton's second law):

$$m_{\rm p} \, \frac{{\rm d} v_{\rm p}}{{\rm d} t} = F_{\rm m} + F_{\rm f}$$

► Magnetic force *F*_m:

$$F_{\rm m} = \frac{4\pi r_{\rm p}^3}{3} \frac{\mu_0 \, 3 \left(\chi_{\rm p} - \chi_{\rm f}\right)}{3 + \left(\chi_{\rm p} - \chi_{\rm f}\right)} \, H \cdot \nabla H$$


• Drag force $F_{\rm f}$:

$$F_{\rm f} = -6\pi\eta r_{\rm p} \left(v_{\rm p} - v_{\rm f} \right)$$

symbol	label		
m _p	particle mass		
$v_{\rm p,f}$	particle/fluid velocity		
r _p	particle radius		
μ_0	permeability of vacuum		
$\chi_{p,f}$	susceptibility of particle/fluid		
Н	magnetic field		
η	fluid viscosity		

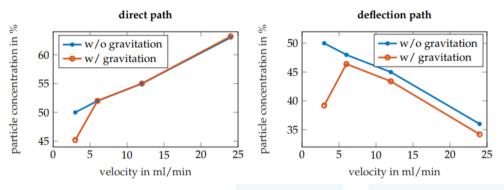
Observed Model

- Transport from the left to the right within a 45° bifurcation vessel
- Particle packets of 5 × 100 particles
- Velocity of one particle is depicted by its color: red corresponds to a high and blue to a low normalized particle velocity

Simulation Parameters

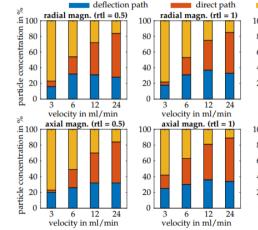
category	symbol	value	unit	label
vessel	r _v	2	cm	radius
	L	13	cm	length
	μ_{f}	1	—	relative permeability of the fluid
particle	r _p	350	nm	radius
	ho	2000	kg/m^3	density
	μ_{p}	4000	-	relative permeability
magnet	V	3	cm ³	volume
	$M_{\sf sat}$	10 ⁶	A/m	saturation magnetization
varied	V	3,6,12,24	ml/min	fluid velocity
	rtl	0.5,1,2	_	magnet's radius to length ratio

Results: Influence of the Fluid Velocity


 $v = 3 \, \text{ml/min}$

- Normalized velocity profile of the setup. The red color corresponds to a high and blue to a low normalized velocity
- Before the bifurcation: parabolic velocity profile
- \blacktriangleright At the bifurcation: turbulence \longleftrightarrow increasing with velocity
- \blacktriangleright Higher velocity in the middle of vessel \rightarrow greater drag force

Results: Influence of the Gravitational Force



- Influence of the gravitational force decreases with an increasing fluid velocity
- lmpact in direct path only observable for v = 3 ml/min

Results: Influence of the Magnet

- remain in the vessel radial magn. (rtl = 2) 100 80 60 40 20 0 12 3 6 24 velocity in ml/min axial magn. (rtl = 2)100 г 80 60 40 20 0 12 6 24 2 velocity in ml/min
- For lower velocities magnetic field is too strong → most particles trapped by magnet
- Magnetization directions: higher impact of magnet for radial magnetization
- Smaller rtl-value has greater influence on particle propagation

- Particle steering depends on numerous parameters
- Influence of gravitation can be neglected for higher fluid velocities
- Particles in upper branch are trapped by magnet, the ones in the lower middle take desired direction
- For a fix fluid velocity and magnet, there must be an optimal zone to guide particles in the desired direction
- Deflection of particles towards a desired direction is difficult by using only one simple permanent magnet

TECHNISCHE FAKULTÄT

- Replacing permanent magnet by electromagnet, to fit applied magnetic field strength and its gradient to current fluid velocity
- To solve the trapping problem, the magnet can be switched on and off
- Figure out "optimal zone" for particle navigation
- Further optimization will be done

TECHNISCHE FAKULTÄT

Thank you for your attention © Questions?