

Performance Optimization of a Differential Method for Localization of Capsule Endoscopes

S. Zeising ¹, K. Ararat ¹, A. Thalmayer ¹, D. Anzai ², G. Fischer ¹ and J. Kirchner ¹

¹Institute for Electronics Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg

²Graduate School of Engineering, Nagoya Institute of Technology

7th International Electronic Conference on Sensors and Applications 15.11.2020 - 30.11.2020

[1]

Does this look comfortable?

- Capsule Endoscopy
- Static Magnetic Localization
- Differential Localization Method
- Simulation Setup and Evaluation Procedure
- Results and Discussion

Capsule Endoscopy (CE)

- Swallowable capsule with integrated camera for gastrointestinal diagnosis
- Goal: enable patients daily life activities during diagnosis (8–12 hours)
- Capsule location for a certain video frame required
- ► Research topic since ~ 20 years → Still no reliable localization method

Fundamentals: Static Magnetic Localization

- Showed best localization performance in literature [2, 3]
- Embedded permanent magnet generates static magnetic field

Determine position (a, b, c) and orientation (m, n, p) of magnet $\rightarrow 6$ unknowns

- Arrange *i*th sensor at observer point P_i around the abdomen
- Derive analytic \vec{B}_i with dipole model for an observer point P_i
- Derive estimated $\vec{\hat{B}}_i$ with *i*th sensor
- Minimize error function ϵ according to (a, b, c, m, n, p) $\epsilon = \sum_{i=1}^{N} (B_{x_i} - \hat{B}_{x_i})^2 + (B_{y_i} - \hat{B}_{y_i})^2 + (B_{z_i} - \hat{B}_{z_i})^2$
- Need N sensors for an over-determined equation system solved by Levenberg-Marquardt (LM) algorithm

Geomagnetic Flux Density

z (vertical)

$$\vec{H}_{0}$$
 (a, b, c)
 \vec{R}_{i} y (west)
x (north)

- Geomagnetic field \vec{B}_{geo} interferes with \vec{B} of magnet
- ► This leads to localization errors

State-of-the-art: Geomag. Compensation

 Static compensation. [2]: sensor calibration according to geomagnetic field

 \rightarrow Only valid if localization system is static

► Dynamic compensation [3]: two extra sensors were used → Localization performance significantly varied for different rotations

Shao et al. [3]

Differential Localization Method

- Apply I II for each sensor pair $\rightarrow \vec{B}_{geo}$ is homogeneous \rightarrow it cancels out under the made assumptions
- Differential method reduces the dimension of the non-linear equation system by a factor of 2
- Localization accuracy is invariant for different rotations of the localization system

- \blacktriangleright Proposed differential method 1 achieved position and orientation errors of $0.95\pm0.66\,mm$ and $0.58\pm0.45\,^\circ$
- Orientation of magnet had high impact on position and orientation errors
- ▶ Size of magnet was $10 \times 10 \text{ mm}^2 \rightarrow$ state-of-the-art capsules have limited space
- Perform convergence test of computational domain size
- Variation of magnet size

¹Zeising, S.; Anzai, D.; Thalmayer, A.; Fischer, G.; Kirchner, J. Novel Differential Magnetic Localization Method for Capsule Endoscopy to Prevent Interference Caused by the Geomagnetic Field. Kleinheubach Conference (to be published in Book of Abstracts), 2020

Simulation Setup

- Homogeneous geomagnetic flux density was applied
- ▶ 3 stable elliptical rings (40×33) cm² with 4 Sensors each (12 in total)
- Sphere with radius b as computational domain
- Boundary condition is magnetic insulation $(\vec{B} \cdot \vec{n} = 0)$
- Cylindrical permanent magnet

Results for Convergence Test

- For a radius of 800 mm errors converged to less than 0.1 mm and 0.1 °
- Orientation of magnet has less impact as in our previous work

Diameter-to-length ratio R:	P _{err} in mm	$O_{ m err}$ in $^\circ$	$arnothin \hat{B} $ in μT
(longest magnet) 0.5	0.22 ± 0.09	0.20 ± 0.12	17.41 ± 19.84
1	0.05 ± 0.05	0.05 ± 0.02	8.74 ± 9.97
$\sqrt{4/3}$	0.07 ± 0.05	0.04 ± 0.02	7.60 ± 8.67
2	0.10 ± 0.05	0.02 ± 0.01	4.37 ± 4.99
(shortest magnet) 5	0.11 ± 0.06	0.01 ± 0.01	1.75 ± 1.99

- For R of 1 and $\sqrt{4/3}$ errors significantly below 0.1 mm and 0.1 °
- Orientation errors decreases with shorter magnets
- \varnothing $|\hat{B}|$ is lowest for the shortest magnet

- Impact of magnet orientation on localization accuracy was significantly reduced
- Rotation-invariant position and orientation errors were significantly reduced
- Proposed method is feasible even for a small magnet
- Simulation-based results will be validated by means of experimental measurements

Thank you for your attention

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

TECHNISCHE FAKULTÄT

Questions?

[5]

CE a little 'bite' more comfortable?

- 1 https://www.victoriahospitalmyanmar.com/packagepost/endoscopy-packages/ (date of access: 16.09.2020)
- 2 Pham, D. M. and Aziz, S. M.: A real-time localization system for an endoscopic capsule using magnetic sensors, Sensors (Basel, Switzerland), 14, https://doi.org/10.3390/s141120910, 2014.
- 3 Shao, G., Tang, Y., Tang, L., Dai, Q., and Guo, Y.-X.: A Novel Passive Magnetic Localization Wearable System for Wireless Capsule Endoscopy, IEEE Sensors Journal, 19, 3462–3472, 2019.
- 4 Zeising, S.; Anzai, D.; Thalmayer, A.; Fischer, G.; Kirchner, J. Novel Differential Magnetic Localization Method for Capsule Endoscopy to Prevent Interference Caused by the Geomagnetic Field. Kleinheubach Conference (to be published in Book of Abstracts), 2020
- 5 https://greaterorlandogi.com/services/capsule-endoscopy/ (date of access: 18.09.2020)