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Abstract: The main objective of this work is the transition of destructive material testing towards 

non-destructive testing methods and the investigation of predictor functions derived by Machine 

learning applied to destructive testing methods like tensile tests. The output provides information 

about the material state and damages in advance, i.e., dealing with functionals f(x): x → y, where x 

is the strain (length) and y the stress (load force) variable. The scope of this work focuses on learning 

of predictor functions by using simple commonly used stateless forward and state-based recurrent 

neural networks providing two outputs separately: (1) The prediction of damage events by past 

recorded data with functions of the form f(Y0): Y0 → xdam, where Y is a data point series of the load 

force (stress) variable y, and (2) The prediction of two-dimensional data point series (e.g., strain-

stress curves) with functions of the form fΔ(Y): Y → YΔ and the aim to predict (extrapolate) the 

development of the function for a progressive difference Δx of the strain variable. I.e., we derive 

new function sets {f1,..,fn} from training data to predict the material behaviour and state transitions 

(e.g., from elastic to plastic behaviour).. 

Keywords: Material Testing, Tensile Tests, Damage Prediction, Data Series Forecasting, Recurrent 
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1. Introduction 

There is an emerging field of new materials, including, but not limited to, fibre-metal laminates, 

foam materials, and materials processed by additive manufacturing, highly related to a broad range 

of applications. Typically, material properties such as yield strength, inelastic behaviour, and damage 

points are determined from tensile tests.  

The main disadvantage of tensile testing is the irreversible modification of the device under test 

(only one experiment possible!). We develop and investigate the training of approximating predictor 

functions by Machine Learning (ML) and simple Artificial Neural Networks (ANN) for inelastic and 

fatigue prediction by history recorded data. The predictor functions should be able to predict 

irreversible effects like inelastic (plastic) behaviour and material damage by data measured from 

simple tensile tests within the elastic range of the materials.  

We show some preliminary results from data from tensile test experiments and outline the 

challenges to derive such predictor functions by using artificial neural networks and Long-short-term 

Memory cells (LSTM). In time-series and data-series prediction, the neural network is activated by a 

linearised sequence of sensor samples measured either from laboratory tensile tests or by using 

strain-gauge and force sensors at run-time. The predictor functions outputs an extrapolation of the 
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development of the measured variables (e.g., tensile load force, stress with respect to crosssectional 

area). 

Tensile tests (TT) are used to characterise material properties like yield criterion and the work 

hardening parameters to be identified, the maximal strength, elastic and non-elastic behaviour [3]. 

Commonly, a TT modifies the device under test (DUT) irreversible (destructive method). Only one 

test for each sample is possible! Non-elastic (plastic) behaviour and damage can only be detected 

from data measured in the past (the event happened). New hybrid and syntactic foam materials pose 

non-linear and unexpected behaviour hard to model on functional level. 

This work investigates predictor functions for damage prediction and multi-step ahead data 

point series prediction derived originally from time-series prediction [5]. Artificial neural networks 

(ANN) are suitable models for time-series predictor functions [4] by using networks with a feedback 

loop from neuron outputs to input edges of neurons of the same or a previous layer, i.e., recurrent 

neural networks (RNN). This feedback introduces state (memory). The commonly deployed 

gradient-based training of simple recurrent networks is difficult due to exploding gradients. Instead, 

more advanced architectures with gating are utilised, e.g., Long-short term memory cells (LSTM). 

Typically the time domain is the series ordering variable, but any discretisable variable can be the 

ordering variable, e.g., the measured strain length of a tensile test. This leads to the more general data 

series prediction. But data series prediction can be performed with feed forward networks, too [8]. 

Both approaches are compared in this work, 

The prediction of the plastic material behaviour in advance should be possible by sensor data 

from load tests acquired within the elastic material range only. The prediction of the damage point 

should be possible sensor data from load tests acquired within the first segment mainly consisting of 

the elastic range and the beginning of the first plastic segment. 

The following sections introduce the methods, the model networks, the training and test 

techniques, followed by a discussion of analysis results from tensile tests. 

2. Aims and Methods 

Data Series Processing. 

It is assumed that there are experimental methods or measuring techniques that produce a series 

of sensor data points related to the time, spatial, or any other physical domain. There are two different 

methods applied in this work to process sensor data series: 

 

 RNN: Sequentially using state-based recurrent artificial neural network; 

 FFNN: In parallel using feed forward artificial neural networks. 

 

Both network architectures and data processing methodologies are compared in Fig. 1. The 

sequentially activated state-based network (commonly using Long-short term memory cells) is used 

for data series prediction. The parallel activated feed forward network is used to predict a damage 

feature. 
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Fig. 1. Sequential versa parallel processing of data points of measured sensor data series  

Damage prediction. 

The first approach discussed in this work utilizes data points from tensile tests within the first 

segment (basically the elastic and the beginning of the first plastic range). From this first segment a 

small number (< 20) of feature points is extracted and used to predict the strain length xdam where the 

specimen will break (fatal damage). This point is defined by a rapid decrease of the load force towards 

zero. 

 

Fig. 2. Damage point prediction (strain length x) from measured data of the first segments of the 

strain-stress diagram from tensile tests 

Material behaviour prediction. 

The second approach utilizes data point series prediction to recognize material state transitions 

like the transition from elastic to plastic material behaviour in advance. This requires an accurate 

prediction of the strain-stress (or strain length and load force) functions of a specific specimen. The 
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entire strain-stress curve of a specimen is derived from data series of <x,y> tuples where x is the strain 

length and y the load force variable. 

Learning a set of predictor model functions {f1,..,fn} with fδ(Y): Y → Yδ with Yδ ⊃ Y from strain-

stress curves requires state-based predictor functions. There is Y={y1,y2,..yi}. One common model is a 

recurrent artificial neural network with Long-short term memory cells (LSTM), already successfully 

deployed in data point series prediction for damage event diagnostics [1] [4]. 

Y is a series of equally spaced y-values {y1,..,yn} with respect to the x variable, and Yδ is a shifted 

series {y1+δ,..,yn+δ}.  

The trained models can be used to predict the future development based on past data of: 

 

1. The stress (load forces) acting on the sample related to the observed strain; 

2. The strain (length) related to observed stress or measuresd load forces (inverse 

problem). 

 

 

Fig. 3. A typical measured strain-stress curve from a tensile test (blue line) and forward predictions 

(red line segments) xi+δ  

Each predictor function F of the set &Fopf; is able to predict the target variable at i+δ steps ahead 

assuming a descritization using the past target variable values (measured), i.e., performing an 

extrapolation of the function for future function values: 

 

 0 1{1,2,.., }: ( ) ( , ,.., )im y i F y y y       (1) 

Input and output neurons of continuous predictor functions uses typically a sigmoid activation 

function to provide a nearby linear transmission in the desired output range. 

3. Experimental Data 

The following experiments were carried out with data from tensile test made with aluminium 

sheets (approx. 5 × 12 × 1 mm size). There are three series of specimens (Fraunhofer IFAM, Lehmhus 

et al.). A reference series R, and two thermally treated specimens with the series F and T. The samples 

of the series F and series T are made of heat treated 7075 aluminium sheets with dimensions of 

approx. 5x12x1mm. In the case of series F, the sheets were quenched directly after pouring in 20 °C 

warm water. After quenching and an aging process at room temperature, the series-T was again 

thermally temperature-controlled at 170 °C for 8 days. The aluminium sheets of the reference series 
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have not undergone any thermal treatment. The plates of the individual series were clamped at 

different angles during the tensile tests in order to achieve a variance. 

One main issues with data sets from tensile test is the low degree of variance. Typically, the 

(labelled) data set is split in training and test sub-sets. 

Data Normalization and Augmentation. 

Data series prediction uses commonly series of data tuples <x,y>, e.g., with x = t (time variable). 

The prediction is applied only to a sequence of y values. In this work, the ordering variable x is a 

sensor variable from the tensile test (strain length), and y is the target variable to be predicted (load 

force or stress). The original sensor data series must be linearised with respect to the x variable, i.e., 

the final data series contains only equally spaced force values with respect to the measured strain 

length, i.e., a constant Δx(yi,yi+1) = δ 

The synthetic data augmentation is a possibility to generate additional data sets from a few 

measured data sets, typically the situation in tensile test experiments. The first consideration is simply 

to stretch or compress one or more existing curves linearly on the force axis. This approach leads to 

a too small variation of the synthetic data. Monte Carlo simulation can add randomness to measured 

data and can extend the training data base significantly. This method is an established method to 

avoid the trend to specialisation of predictor functions during training. 

The second approach uses the consideration of a weighted averaging of two or more curves to 

generate new data series. This can vary due to the different weighting of the respective curves. Thus, 

it is possible to generate infinitely many new synthetic curves.[7] to do this, a "Dynamic Time 

Warping" (DTW) path is generated from two random curves, which is then used to average the points 

of the two curves assigned to each other. The DTW path is constructed as an Array of tuples, where 

the first element of the tuple is the point of the first curve and the second element is the associated 

point from the second curve [6]. 

4. Predictor Functions and Models 

Predictor functions can be modelled using mathematical functions or using ANN to 

approximate these functions. A modified Neataptic ML framework was used to implement FFNN 

and LSTM-RNN and to perform training and prediction [9]. 

Feed Forward Networks. 

For the damage point prediction a parallel activated ANN is used approximating the hypothesis 

function f(y0,..yn): y → xdam consists of n (e.g., n = 18) input neurons (each connected with one of the 

data points from the load force variable y), one ore more inner layers, and one output neuron. Good 

prediction results were achieved with the neuron-layer configuration [n:7:3:1]. I.e., the first n down 

sampled data points {y1,y2,..,yn} are used to predict the distance xdam to a data point related with the 

damage (break) event.  

Alternatively a sequentially activated recurrent ANN with memory cells is used for comparison. 

The architecture is discussed in the next section. 

Recurrent Networks. 

Another aim of this work is to derive a predictor function that is able to predict a curve trace in 

advance for a given number of steps (delta of the input variable relative to the output variable). 

Extrapolation requires either a fitted function model, i.e., solving a regression problem, or state-based 

model that remembers and recognizes typical curve trace segments to give an approximation of the 

extrapolation of these segments. Regression by function fitting results typically in specialized model. 

More generalized models can be approximated in a more straight forward way by state-based ANN 

well known for time-series prediction. 
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The ANN consists of an input layer (only one neuron), a hidden LSTM layer (or more), and one 

output layer (only one neuron). The input variable of the network is a sequence of y values, i.e., 

measured forces. The output variable of the network is the predicted y value for a future x point. 

The hidden layer consists of LSTM cells which are connected with the previous and next layer 

(optional connection between MC in same layer). The sequence samples must be normalized (equally 

spaced) with respect to the also measured strain length x! 

The memory cell of the LSTM is connected to several gates. The gates control connection weights 

dynamically (like a valve). There are different optional LSTM network configurations effecting the 

interconnection of LSTM cells with each other. 

 

 

Fig. 4. The sequentially activated LSTM-RNN implementing the predictor functions fΔ to predict 

material behaviour and state transitions  

Different network configurations were tested. Finally, a LSTM cell chain with a horizontally 

linear configuration [1:1:1:1:1:1:1:1:1:1:1:1] with one input, one output neuron, and a chain of n = 10 

connected LSTM cells were chosen for the generalised yδ variable prediction (supporting a broad 

range of material variations). Another approach for a specialised predictor function (supporting only 

one specimen class) used a vertically expanded configuration, e.g., [1:3:4:1]. 

5. Training and Test 

Experimental Data. 

The original raw experimental data from the tensile tests were pre-processed by x-variable 

normalisation, augmentation by Monte Carlo simulation and dynamic eime warping techniques, and 

finally y-variable normalisation to the value range [0,1].  

Feed Forward Network. 

The FFNN was trained with a sequence of randomly selected of training examples by using a 

classical gradient based error back propagation algorithm. The test was performed with respect to 

the target output variable *x*~dam~ compared with the value computed numerical from the full 

tensile test curve. 

Recurrent Network. 

The RNN were trained with a sequence of randomly selected training examples. In the case of 

the damage point target variable, all data points of a sequence (down sampled to only a few points, 

n < 100) activated the RNN sequentially. After activation, an error back propagation step was 

performed (comparing actual and target output value). 
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The data point series prediction y(x+i) uses a single data point activation with immediate error 

back propagation. The test was performed with all data sets by comparing the predicted with the real 

output values. 

6. Results 

The trained predictor functions are evaluated with respect to the two target variables damage 

point and load force series prediction.  

Damage prediction. 

Forward Parallel Network. 

The in parallel activated FFNN shows a high accuracy of the damage point prediction with low 

variance. The training was performed (1) With a random 1:1 split of training and test data from the 

entire data set consisting of 3 different series, and (2) with all experiments. The test was performed 

with all experiments. The average accuracy is in both cases about 9% (max.: 30%, σ=7%). Results are 

shown in Fi.g 5. 

 

Fig. 5. Prediction results for the damage length point xdam of different specimens and series using an 

in parallel activated feed forward network  

Recurrent Sequential Network. 

the same test and the same training data was made with a sequentially activated LSTM-RNN, 

too. This method shows low average accuracy about 15% not suitable to predict the damage point. 

Results are shown in Fi.g 6. 
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Fig. 6. Prediction results for the damage length point xdam of different specimens and series using a 

sequentially activated LSTM-RNN network  

Material behaviour prediction. 

TT from 42 experiments of metal sheets with different thermal preparation were used as input 

data for training and testing of the LSTM-RNN predictor function. 

Example plots of measured (red line) and predicted x-y curves (green line) for different 

specimens and series is shown in Fig 7. The predictor function was trained with data from all series 

and using all experiments of each series. 

The maximal prediction error of the predictor function for δ = 25 (about 3%, equal to 25μm) 

sample points (full scale of measurement ranges between 700 and 1400 points) is below 10%, with an 

average of less than 5%. The prediction deviates more strongly in curve segments with a high 

gradient (with spikes, too). 

Higher number of hidden LSTM layers can improve prediction accuracy. Although the error 

between the original and the predicted strain-force curves is lower than 10%, the predicted curves 

tend to be delayed (positive shift on x-axis) and it is difficult to predict the beginning of the inelastic 

material behaviour in the elastic segment. This a result from the short elastic segment compared with 

the long inelastic segment, too. 

 

Fig. 7. Results from the material strain-stress behaviour prediction of different specimens and series 

using a sequentially activated chain LSTM-RNN network with δ = 25μm (equal to 25 data points)  

In Fig. 8 samples of prediction results are shown with training and prediction using only one 

series R with different model network configurations and without data augmentation. In contrast to 

the models trained by all specimens and over all series (previous results), this limitation to a specific 

series enables the detection of the beginning of the plastic segment with data taken from the elastic 

range. The predicted curves in Fig. 8 do not pose the prediction lag from the previous curve 

predictions. But a proper design of the network architecture is eminent for accurate predictions. 
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Fig. 8. Results from the material strain-stress behaviour prediction of one specimen from series R 

using a sequentially LSTM-RNN network with δ = 10 data points (approx. 25μm) and different model 

netwrok configurations [6]  

7. Conclusion 

Simple forward and recurrent neural networks are evaluated for learning functions for 

predicting the future development of material behaviour under load conditions, i.e., prediction of 

damage points (by estimating the strain length where the damage will occur) and material state 

transitions like elastic to inelastic material behaviour based on past measured force and strain length 

value sequences (mostly in the elastic material range). A classical in parallel activated feed forward 

network was able to predict the damage point by the first segment of data points of the strain-stress 

curve with a high accuracy. The network was activated by the data points in parallel. Despite the 

common understanding that RNN-LSTM are suitable candidate models for time and data point series 

prediction, they could not be trained successfully to predict damage points and material state 

transitions in a general way (covering different material and specimen properties by one model). 

Here the data points activate the network sequentially. Specialized models limited to specific 

specimen, material and treatment parameters were in principle able to predict the plastic material 

behaviour with data points from the elastic segment. 
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