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Abstract: The St. Johns River, located in Northeast Florida, USA, is a large watershed characterized 

by relatively flat topography, porous soils, and increasing urbanization.  The city of Jacksonville, 

Florida is located near the downstream terminus of the river near the Atlantic Ocean.  The lower 

portion of the watershed located downstream of Lake George is subjected to tidal exchange and 

storm surge from tropical storms and hurricanes as well as extra-tropical winter storms.  Extreme 

flood events in the Lower St. Johns River can be caused by rain-driven runoff, high tide, storm surge 

or any combination of the three.  This study examines the range of potential extreme flood 

discharges caused by rain-driven runoff within six larger sub-basins located in the Lower St. Johns 

River.  The study uses multiple methods including published flood insurance data, two statistical 

hydrology methods, and model simulations to estimate an array of flood discharges at varying 

return frequencies.  The study also examines the potential effects on flood discharges from future 

land use changes and the temporal distribution of rainfall.  The rain-driven flood discharge 

estimates are then fit to a normal distribution to convey the overall risk and uncertainty associated 

with the flood estimates.  The study also proposes a new methodology to estimate rain-driven 

flood discharges using existing numerical models of each the six sub-basins prepared by the Saint 

Johns River Water Management District.  Overall, the study revealed a wide range of reasonable 

rainfall-driven flood estimates are possible using the same data sets.  The wide range of estimates 

will help inform future resiliency projects planned in the study area by providing a more realistic 

set of bounds with which planning can proceed.  The estimates derived herein can be combined 

with the independent or dependent effects of tide and storm surge in order to characterize the total 

flood resiliency risk of the region. 
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1. Introduction 

Extreme flood estimation is a continuously evolving field of research. It is vital in a world where 

urbanization, sea level rise, and climate change are prevalent. Accurate flood estimation methods are 

a powerful tool in securing economical and community wellbeing. Research is underway at the 

University of North Florida in Jacksonville, Florida USA to assess extreme floods in six critical sub-

basins of the St. Johns River.  These include Black Creek, Julington Creek, Durbin Creek, Big Davis 

Creek, Ortega River, and Pablo Creek. The focus of this paper is the Pablo Creek sub-basin.  Future 

work will discuss the remaining basins under study. The 10-, 25-, 50-, and 100-year return frequency 

floods (e.g. the 10%, 4%, 2%, and 1% annual exceedance probability floods) have been assessed using 

multiple methodologies including: the use of the St. Johns River Water Management District’s 

(SJRWMD) HSPF hydrologic model, statistical computations using of the Log-Pearson Type III and 

Power Law distribution, and analysis of existing Federal Emergency Management Agency (FEMA) 

Flood Insurance Study (FIS) estimates. Sensitivity of parameters such as land-use change, 

precipitation frequency values (median versus 90th percentile), and rainfall temporal distribution 
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(uniform versus Synthetic Type II Modified) were assessed in the resulting extreme flows determined 

from the HSPF Model. The use of the existing SJRWMD’s HSPF model has not previously been used 

to estimate extreme flood flows. The SJRWMD’s HSPF model was originally programmed for their 

Water Supply Impact Study to estimate water withdrawal limits in the St. Johns River, but it was 

reprogrammed and modified for the use of extreme flood estimation as part of this research effort. 

The model reprogramming methodology has the potential of being implemented in any sub-basin 

along the St. Johns River in Florida where an existing HSPF model has been developed. Figure 1 

depicts an outline of the SJRWMD’s HSPF model area along with the sub-basins of interest.  

 

Figure 1. Project study area covering the St. Johns River watershed in Florida, USA. 

2. Materials and Methods  

In order to obtain the 10-, 25-, 50-, and 100-year flood flow estimates at the sub-basins of interest, 

the original SJRWMD HSPF models were modified to simulate the scenarios of interest. The general 

procedure associated with these modifications involved simulating relevant precipitation events, 

understanding where the simulated precipitation should be incorporated into the model, adding 

antecedent moisture conditions, and consideration of rainfall temporal distribution and land-use 

change. Various reaches in each sub-basin are represented in the models. The models were 

programmed to simulate land-use conditions from 1995 and those projected for 2030. The 1995 land-

use condition (base condition) is based on 1994 and 1995 color-infrared aerial photography of the 

entire SJRWMD (SJRWMD, 2012). The 2030 future condition is the SJRWMD’s “planning horizon” 

and projects land-use changes and urbanization into the future. The 1995 land-use condition was 

selected as the primary land-use for which each sub-basin was assessed at. The variation in land-use 

was assessed by performing the simulations at Julington Creek, Dubin Creek, and Big Davis Creek 

at both the 1995 and 2030 land-use condition. From there, a comparison of results provides insight 

into the effects that varying the land-use has on the resulting flood flows from those sub-basins.  The 

difference in peak flood flows also gives a general indication regarding urbanization effects within 

any sub-basin in the St. Johns River watershed.  

To produce the 10-, 25-, 50-, and 100-year flood flows, the 24-hour duration, 10-, 25-, 50-, and 

100-year frequency precipitation events were simulated – causing the flood flows to be rainfall 

driven. The process of simulating the given frequency precipitation events involved identifying the 
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appropriate precipitation frequency value to simulate on a specific date. Daily and hourly 

precipitation data over the course of up to about 100 years from various rainfall gages contained in 

the St. Johns River watershed are incorporated into the model. Each model run process relies on the 

daily and hourly precipitation data to complete each simulation. The pre-determined precipitation 

frequency values were added directly to the daily and hourly precipitation data on a specific target 

date. The target dates were selected by first determining the 50th percentile flow rates in the sub-basin 

of interest. From there, 10 target dates were selected within a 15% range of accuracy of the median 

(50th percentile) flow rate. The 50th percentile flood is a standard baseline for various flood frequency 

analysis procedures (Malamud and Turcotte, 2006). The 10 target dates were selected in varying 

months of the year to account for the varying rainfall conditions occurring throughout the seasons. 

Using the Theissen polygon network established by the SJRWMD (2012), the rainfall gages of interest 

for each sub-basin were identified. The median and 90% percentile 24-hour duration, 10-, 25-, 50-, 

and 100-year return frequency precipitation values were recorded at each gage of interest using the 

NOAA Atlas 14 dataset (NOAA, 2005). The 90th precipitation frequency values were simulated at 

each sub-basin. The median 24-hour precipitation values were also simulated in the Julington Creek, 

Durbin Creek, and Big Davis Creek sub-basins to understand the effect on varying precipitation 

magnitudes. 

Antecedent moisture conditions (AMC) were also simulated. Three levels of AMC exist: AMC-I 

for dry, AMC-II for normal, AMC-III for wet conditions (SJRWMD, 1985). According to Schiariti 

(n.d.), AMC II is considered for modeling purposes because it is essentially the average moisture 

condition. 2.1 inches of rainfall over the course of five days was simulated before each target date 

(SJRWMD, 1985) to represent the AMC. 

A uniform and synthetic temporal precipitation distribution were also assessed. According to 

Suphunvorranop (1985), the Type II Modified is representative of Florida specifically, so that is what 

was implemented in this research effort. The precipitation was modeled following a uniform 

distribution in all model runs. However, to determine the effects on the flood magnitude predictions 

resulting from varying precipitation temporal distributions, the Type II Modified distribution was 

simulated in the Julington Creek, Durbin Creek, and Big Davis Creek sub-basins paired with the 1995 

land-use conditions, 90th percentile precipitation, and AMC.  After an analysis of the resulting model 

results, statistical methods were then utilized to develop additional flood estimates.  

The statistical Log-Pearson Type III analysis was performed on both real data (observed data 

from real streamflow gages) and synthetic data (gages that were modeled in HSPF). Using the 

synthetic streamflow data is advantageous because a longer period of record was at times observed 

compared to the real gauged streamflow data. Using information complied by Oregon State 

University (2005) The following equation was used to calculate the LP3 distribution: 

𝑙𝑜𝑔 𝑥 = 𝑙𝑜𝑔 𝑥̅̅ ̅̅ ̅̅ ̅ + 𝐾𝜎𝑙𝑜𝑔 𝑥 (1) 
 

 

where x is the flood discharge value of some specified probability 

log x represents the discharge values 

K is the frequency factor 

And 𝜎 is the standard deviation of the log x values. 

The frequency factor, K, is a function of the skewness coefficient and return period. From there, 

the maximum flow (Q) for each water year was determined. This information was then ranked from 

the largest discharge value to the smallest discharge value and each streamflow value was ranked 

from 1 to n, which is the total number of values included in the dataset. Next, the log of each annual 

peak streamflow was obtained and defined as log(Q). The average of every Q and the average of 

every log(Q) was computed. The following computations were conducted for every water year: 

log(𝑄) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(log(𝑄))2 (2) 

log(𝑄) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(log(𝑄))3 (3) 
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Next, the return period was calculated using the Weibull plotting position presented in 

Malamud and Turcotte’s (2006) research. The Weibull plotting position provides the recurrence 

interval in years with the following equation: 

𝑇 =
𝑁𝑊𝑌 + 1

𝑁𝐶

 (4) 

where, Nc is the rank and NWY is the number of water years in the data set. 

Next, the final calculation was completed by determining the exceedance probability of each 

discharge value with the formula: 

𝐸𝑥𝑐𝑒𝑒𝑑𝑒𝑛𝑐𝑒 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

𝑇
 (5) 

The sum of the values computed for Eq. (2) was determined as well as the sum of the values 

computed for Eq. (3). Then, the variance, standard deviation and skew coefficient were calculated 

using the equations below: 

∑ ((𝑙𝑜𝑔𝑄 − 𝑎𝑣𝑔(𝑙𝑜𝑔𝑄))^2𝑛
𝑖

𝑛 − 1
 (6) 

𝜎log 𝑥 = √
∑(𝑙𝑜𝑔𝑥 − log 𝑥̅̅ ̅̅ ̅̅ )^2

𝑛 − 1
 (7) 

𝑠𝑘𝑒𝑤 𝑐𝑜𝑒𝑓𝑓. =  
𝑛 ∗  ∑ (log(𝑄) − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(log(𝑄)))^3𝑛

1

(𝑛 − 1)(𝑛 − 2)(𝜎 log(𝑄))^3
 (8) 

An appropriate frequency factor table (Haan, 1977) was used along with the calculated skew 

coefficient to find the k-values. The following equation was used to calculate the 10-, 25-, 50-, and 

100-year discharges: 

log (𝑄(𝑇) = 𝑎𝑣𝑔(log(𝑄)) + [𝐾(𝑇, 𝐶𝑆)] ∗  𝜎log (𝑄) (9) 

The Power Law (PL) is the second selected statistical method for flood flow estimation in this 

research. Like the Log-Pearson Type III method, real data and synthetic data was assessed. 

Referencing the work of Malamud and Turcotte (2006), the maximum streamflow value (Q) for every 

given year of water data was sorted from largest to smallest. The data was assigned a ranking value, 

NC, which was used to determine the Weibull plotting position return recurrence interval, T. NC is 

ranked as 1, 2, 3, …, NWY and T is defined as: 

𝑇 =  
𝑁𝑊𝑌

𝑁𝐶

 (10) 

The log function was applied to all peak streamflow values and all T values. Then, a scatterplot 

of log(T) versus log(Q) was created. A linear regression trendline was determined following the 

generalized power law equation: 

𝑙𝑜𝑔𝑄[𝑇] = 𝛼 log(𝑇) + log(𝐶) (11) 

The trendline of the scatterplot provided the initial estimate for the α and C regression 

coefficients. The α coefficient was identified as the slope of the trendline equation. The C coefficient 

was identified as the y-intercept of the trendline equation. Once these coefficients were determined, 

the discharge value of the 10-, 25-, 50-, and 100-year flood was calculated. 

Additionally, the Generalized Reduced Gradient (GRG) Nonlinear regression methodology was 

used with the Solver (Microstoft Excel, 2016) plug-in to verify the graphical derivation of the α and 

C coefficient. The least squared method was implemented by first assuming an initial guess where 

the α and C coefficient are greater than 0.01. Then, the modeled Q values were calculated using the 

estimated α and C coefficient using the general PL equation: 

𝑄[𝑇] = 𝐶𝑇𝛼 (12) 
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From there, the sum of squared differences was obtained using: 

𝑠𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑠 = (𝑠𝑢𝑚(𝑄) − 𝑠𝑢𝑚(𝑄𝑚𝑜𝑑𝑒𝑙𝑒𝑑))
2
 

Then, the Solver (Microsoft Excel, 2016) plug-in was used to minimize the sum of the squared 

differences while iterating for the most ideal values of α and C.  

3. Results 

A comparison of results was conducted at each reach in each sub-basin. Table 1 depicts a sample 

of the results obtained in the Pablo Creek sub-basin. Reach 8 is the modeled location of the Pablo 

Creek sub-basin outlet into the Jacksonville, Florida intracoastal waterway. The HSPF model did not 

include a simulated gage, however real gage data was available. The adjusted FEMA FIS flow 

estimates for Reach 8 were obtained by comparing the modeled basin area to the estimated basin area 

from the FIS. The FIS reported a drainage area of approximately 119 square kilometers (FEMA, 2014) 

and the modeled area was approximately 98 square kilometers. The HSPF model area is 

approximately 82% of the drainge area reported in the FEMA FIS.  Therefore, the adjusted FEMA 

FIS estimates represent 82% of the reported FEMA FIS flow values. The flood estimates for the real 

gage were not adjusted because the modeled gage does not have a drainage area association in HSPF. 

Therefore, it was assumed that the modeled area that the synthetic gage encompasses is the same as 

the drainage area that the real gage encompasses in the FEMA FIS.  The HSPF model estimates and 

the statistical estimates were overall low compared to the FEMA FIS estimates in Pablo Creek. 

However, the strong tidal component of this sub-basin greatly influences the results. It is 

hypothesized that the HSPF model does not take into consideration the tidal influence to the extent 

of the FEMA FIS. 

Table 1. Comparison of estimates at Pablo Creek (in m3/s). 

Location 
Return 

Frequency 

1995 Land-use, 

90th Percentile 

Precipitation, 

and AMC 

Log-

Pearson 

Type III 

Power Law 

– Linear 

Regression 

Power Law 

– Nonlinear 

Regression 

Adjusted 

FEMA FIS 

Estimate 

Reach 8 

10-year 59 56 88 56 110 

25-year 76 75 109 94 167 

50-year 86 91 128 138 213 

100-year 99 108 150 203 249 

Pablo 

Creek 

Real 

Gage 

10-year NA 28 33 28 108 

25-year NA 37 68 47 139 

50-year NA 43 115 70 171 

100-year NA 49 196 102 200 

Overall, it was found that simulating 90th percentile precipitation frequency values compared to 

the median precipitation frequency values resulted in statistically significantly higher flood flow 

estimates, the difference between following a uniform versus synthetic Modified Type II rainfall 

distribution does not produce drastic differences in flood flow estimates, and the simulation of the 

2030 land-use condition over the 1995-land use consistently produced higher flood flows across the 

watershed.  

After plotting the results of each method assessed in each sub-basin’s critical locations, the 

normal distribution was applied to the results by computing the mean and standard deviation of the 

data set to produce bell-shaped curves (Smantary and Sahoo, 2020). The normal distribution bell 

curves portrayed a strong presence of a normal distribution in the flood frequency estimates. 

The Ortega River and Pablo Creek sub-basin HSPF models ran well. The 1995 land-use, 90th 

percentile precipitation frequency values, uniform distribution, and antecedent moisture conditions 

were considered in the model runs. However, it would be beneficial to assess the 2030 land-use 

condition paired with the 90th percentile precipitation frequency values and Type II Modified rainfall 
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distribution for all sub-basins where it was not assessed. This combination of parameters yields the 

highest flood flows. 

4. Conclusions 

In a case study conducted by Ninov et al. (2008), the results of their HSPF modeling for flood 

assessment yielded flood flows that were 130% higher than the historical flood flows, while the 

modeled annual, seasonal, and low flows were approximately 25% to 33% less than the observed 

respectively. This is an interesting perspective to considering the research of Ninov et al. (2008) 

produced flood flows that were too high while the results of the HSPF flood modeling presented in 

this research appears to be too low compared to FEMA FIS estimates.  

The Log-Pearson Type III (LP3) statistical computations were successful. Varying results were 

obtained in each sub-basin. The LP3 based flood estimates were greater than the FEMA FIS estimates 

in some sub-basins and less in others. The Power Law (PL) statistical computations were mostly 

successful. The PL derived flood estimates were typically much higher than the LP3 results and the 

HSPF modeled results. The PL derived flood estimates were even higher than the adjusted FEMA FIS 

estimates at times. The PL distributions produced more reasonable estimates for the 10- and 25-year 

flood estimates and appeared to massively overestimate the 50- and 100-year flood flows. The PL was 

selected because of the praise it received in various research studies for being a simple and effective 

method. However, there was certainly a caveat that the PL performs best with a larger data set 

(Kidson and Richards, 2005). The difference in computing the PL distribution regression coefficients 

using the Linear Regression versus Nonlinear Regression method produced varying results. It was 

evident that the data sets were better suited for one method over the other in certain cases.  

The use of the FEMA FIS estimates proved to be an asset as the estimates were derived by 

qualified professionals. There is a degree of validity in comparing the methodologies assessed in this 

research to the FEMA FIS estimates. However, it has also been established that the FEMA FIS 

estimates were all obtained using varying methods (FEMA, 2011, 2013, 2013), which could explain 

why the other methods in this researched produced estimates either greater or less than those 

presented in the FIS. Research conducted by Okoli et al. (2019), compared statistical and hydrological 

methods for the estimation of design floods based on 10,000 years of synthetically generated weather 

and discharge data. Although their hydrologic modeling did not reflect any real applications and was 

intended as a baseline for discussion for comparison of results, their ultimate findings suggest that 

more than one flood estimate should be obtained and the maximum value (within reason) should be 

selected to minimize the likelihood of underestimating the design flood (Okoli, 2019). 

In conclusion, this research has developed a new methodology for producing flood estimates. 

The modification of the St. Johns River Water Management District’s HSPF model to estimate flood 

estimates is a brand-new methodology. Several of the HSPF models need to be expanded for sub-

basins where the extreme flood flows exceed the model flow capacity. However, reasonable flood 

estimates can still be obtained from this new methodology in every sub-basin belonging to the St. 

Johns River. Current existing flood flow estimates are typically established as a one-value estimate 

per return frequency as seen in the FEMA Flood Insurance Studies. Additionally, the selected 

methodologies from which their (FEMA FIS) estimates were obtained are not always consistent. It is 

suggested that future extreme flood estimation procedures include the assessment of multiple 

methodologies to minimize the risk of underestimating design floods. This research is unique in 

producing a set of estimates for the 10-, 25-, 50-, and 100-year floods for the Black Creek, Julington 

Creek, Durbin Creek, Big Davis Creek, Ortega River, and Pablo Creek sub-basins based on hydrologic 

modeling, statistical analysis, and comparison to existing flood estimates.  
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