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Abstract: The synthesis of three O-alkylated eugenol derivatives, bearing a hydroxypropyl chain 
and propyl esters were synthesised and further converted into the corresponding oxiranes. Oxirane 
derivatives were then evaluated against their effect upon the viability of the insect cell line Sf9 
(Spodoptera frugiperda), in comparison with the starting O-alkylates. The results pointing to their 
potential as bioinsecticides, with structural changes eliciting significant effects in terms of potency. 
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1. Introduction 

In the last decades, the need to prevent diseases and damage caused by the attack of various 
pests on plants, has led to the application of high amounts of synthetic pesticides, including 
insecticides, which has resulted in the development of resistance to them by several harmful 
organisms [1]. As an alternative, natural products with insecticide activity have been shown promise 
for insect control in agriculture [2,3]. The use of bioactive compounds of plants presents many 
advantages as insecticide: they are less hazardous to human and animal health, more cheap, non-
toxic to non-target species, and less resistance in the target organism besides being environmentally 
friendly [4]. Essential oils (EOs) exhibit antimicrobial activities with particular potential as 
insecticides [5]. Structural modifications in the constituents of EOs can further enhance their biocidal 
effect [2,4,6,7], being the best alternatives of synthetic chemicals and can be utilized as biopesticides 
or green pesticides [8–10]. 

Eugenol, the major component of clove oil, presents numerous applications including in 
pharmaceutical, food and agricultural industries. It is an important insecticide with large efficiency 
on a wide variety of domestic arthropod pests [6,11].  

Considering all these facts, the synthesis of three O-alkylated eugenol derivatives and the 
respective oxiranes was carried out and then evaluated against their effect upon the viability of the 
insect cell line Sf9 (Spodoptera frugiperda), in comparison with the starting eugenol O-alkylates.  
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2. Results and Discussion 

2.1. Synthesis of Eugenol Derivatives 

4-Allyl-2-methoxyphenol, eugenol, was extracted from clove, and used in the synthesis of three 
O-alkylated derivatives 1a–c, which were then converted in the respective oxiranes 2a–c as shown in 
Scheme 1. Alkylation of the hydroxyl group of 4-allyl-2-methoxyphenol with 3-bromopropan-1-ol 
using cesium carbonate as a base, by heating at 65 °C in acetonitrile, gave methoxyphenoxy)propan-
1-ol 1a. This compound was further reacted with acetic anhydride by heating at 65 °C to obtain 3-(4-
allyl-2-methoxyphenoxy)propyl acetate 1b. 4-Allyl-2-methoxyphenol was also alkylated with ethyl 
4-bromobutanoate by following the same method mentioned above to yield ethyl 4-(4-allyl-2-
methoxyphenoxy)butanoate 1c. Compounds 1a–c were obtained as oils in 53 to 84% yields. Their 1H 
NMR spectra showed the different characteristic signals for the aliphatic protons of methylene and 
methyl groups (δ 1.21–4.27 ppm), as well as the expected protons for the eugenol’s double bond as 
multiplets, CH2 (δ 5.01–5.14 ppm) and CH (δ 5.91–6.01 ppm). 13C NMR spectra of all compounds 
showed signals of the aliphatic carbons from the methylene (δ 24.57–68.69 ppm) and methyl groups 
(δ 14.14–20.66 ppm), in addition to signals of the ester carbonyl groups (δ 170.76 and 173.20 ppm, 
respectively) for compounds 1b and 1c. 

To perform epoxidation of the double bond of eugenol derivatives 1a–c, they were allowed to 
react with m-chloroperbenzoic acid in dichloromethane at room temperature, and the respective 
derivatives, namely 3-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)propan-1-ol 2a, 3-(2-methoxy-4-
(oxiran-2-ylmethyl)phenoxy)propyl acetate 2b, and ethyl 4-(2-methoxy-4-(oxiran-2-
ylmethyl)phenoxy)butanoate 2c were obtained. Compounds 2a–c were isolated as yellow oils in 
yields of 13 to 57%, and were fully characterized by the usual analytical techniques. It stands out that 
epoxidation of compounds 2a–c was verified by the presence of the protons signals related the 
oxirane ring (δ 2.52–3.17 ppm) and the absence of the signals of protons for the double bond of 
eugenol skeleton. The presence of carbon signals relative to oxirane ring, CH2 (δ 46.77–46.78 ppm), 
and CH (δ 52.55–52.56 ppm) also confirmed the structure of expected eugenol derivatives 2a–c. 

 

Scheme 1. Synthesis of eugenol derivatives 2a–c. 

2.2. Toxicity of Eugenol Derivatives 

In a general way, all molecules of the 1 and 2 series presented the same activity profile, namely 
a mild toxic effect around 30–35% of viability reduction. The exception was 2c, which elicited a loss 
of around 50% of viability. Considering that 2b and 2c present a rather similar structure, the only 
difference being the ester type, this feature seems to be of importance, given that the latter was more 
toxic than the former. 
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Figure 1. Viability of Sf9 cells after exposure to the designated molecules for 24 h at 100 µg/mL. *** p 
< 0.001. C: control. 

3. Experimental 

3.1. Typical Procedure for the Preparation of Compounds 2a–c (Illustrated for 2a) 

3-(4-Allyl-2-methoxyphenoxy)propan-1-ol (0.156 g, 7.03 × 10−4 mol, 1 eq.) (4 mL) dissolved in 
dichloromethane was added dropwise to a solution of m-chloroperbenzoic acid (0.346 g, 2.0 × 10−3 
mol, 1 eq.) in dichloromethane (6 mL) at 0 °C. After stirring for 1 h, m-chloroperbenzoic acid was 
again added (1 eq.), and the reaction mixture was stirred for more 12 h. A 10% aqueous solution of 
sodium sulfate (10 mL) was added and the resulting solution was washed with 5% aqueous solution 
of sodium hydrogen carbonate (2 × 10 mL). The organic phase was dried with anhydrous magnesium 
sulfate and solvent was evaporated giving 3-(2-methoxy-4-(oxiran-2-ylmethyl)phenoxy)propan-1-ol 
2a as a yellow oil (0.096 g, 57% yield). Rf = 0.58 (silica; ethyl acetate). 1H NMR (CDCl3, 400 MHz): δH 
2.08 (2H, quint, J 6.0 Hz, OCH2CH2CH2OH), 2.55 (1H, q, CH2 oxirane), 2.80–2.85 (3H, m, CH2Ph and 
CH2 oxirane), 3.13–3.17 (1H, m, CH oxirane), 3.86 (3H, s, OCH3), 3.89 (2H, t, J 5.6 Hz, 
OCH2CH2CH2OH), 4.19 (2H, t, J 5.6 Hz, OCH2CH2CH2OH), 6.71–6.73 (2H, m, H-3 and H-5), 6.84 (1H, 
d, J 8.4, H-6) ppm. 13C NMR (CDCl3, 100.6 MHz): δC 31.75 (OCH2CH2CH2OH), 38.34 (CH2Ph), 46.78 
(CH2 oxirane), 52.56 (CH oxirane) 55.83 (OCH3), 61.57 (OCH2CH2CH2OH), 68.64 (OCH2CH2CH2OH), 
112.50 (C-3), 113.45 (C-6), 120.96 (C-5), 130.52 (C-4), 146.95 (C-1), 149.41 (C-2) ppm. HRMS: m/z (ESI): 
Calcd. for C13H18NaO4 [M+Na]+ 261.1097; found 261.1098.  

3.2. Procedure for Insecticidal Activity 

3.2.1. Cell Culture 

Sf9 (Spodoptera frugiperda) cells were cultivated in Grace’s medium with 10% FBS and 1% 
penicillin/streptomycin, at 28 °C.  

3.2.2. Viability Assessment 

For the assessment of viability, a resazurin assay was used. Sf9 cells were plated at a density of 
3.0 × 104 cells/well andincubated for 24 h with each molecule. After this period, a commercial solution 
of resazurin was added (1:10) and the kinetic reaction of fluorescence increase monitored at 560/590 
nm. It was used 60 min of incubation. 
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4. Conclusions 

Three new three O-alkylated eugenol derivatives, bearing a propyl chain with hydroxyl, methyl 
and ethyl esters as terminals and further converted into the corresponding oxiranes were successfully 
synthetised.  

It was made the evaluation of all derivatives against their effect upon the viability of insect cell 
line Sf9 (Spodoptera frugiperda) and all molecules of the 1 and 2 series presented a mild toxic effect 
around 30–35% of viability reduction. When compared all the compounds, 2c exhibited a loss of 
around 50% of viability, presenting promising insecticidal activity. 
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