THE RADIUS OF REDUCTION

"Using transportation to assess optimal value chain configuration for minimal environmental impact"

Associate Professor Ben McLellan Graduate School of Energy Science, Kyoto University

The Radius of Reduction

- Radius of Reduction (RR) defined as:
 - How far a feedstock can be transported from operation A to a more efficient operation B without the transport impact outweighing the benefit

A four level assessment

- RR can be derived for any metric
- Here demonstrated on:
 - 1. Energy reduction
 - processing efficiency
 - 2. Energy emissions reduction
 - processing specific emissions
 - 3. Energy impact reduction
 - water usage
 - 4. Cost reduction
 - Carbon tax avoidance

Overall energy balance

$$E_{Total} = D \times EF_{trans} + EF \times E$$

□ Where:

- \Box E_{Total} = Total emissions (kg CO₂ / t input mineral)
- \square D = distance transported (km)
- \square EF_{trans} = Emissions factor for transport (kg CO₂ / t km)
- \square EF = Emissions factor for energy usage (kg CO₂ / GJ)
- $\Box E = Energy usage (GJ / t)$

 Distance is equated to difference in emissions or energy

$$\frac{E_{Total} - EF \times E}{EF_{trans}} = D$$

RR is determined from the difference between two operations:

$$RR = \frac{(EF \times E)_A - (EF \times E)_B}{EF_{trans}}$$

Case study: Aluminium Value Chain

- 4 alternative Bauxite mines
- 4 alternative Alumina refineries
- 4 alternative Aluminium smelters
- Compared across 4 metrics
- Examine the potential of alternative combinations to reduce environmental impact

Typical results: Inter-refinery only

Following graphs indicate RR from each refinery to another theoretical refinery obtaining from 0% to 100% improvement in specific environmental impact.

RR (km) - Refining (energy reduction)

RR (km) - Refining (water usage reduction)

Typical results: Carbon tax

- Can also read from the graph:
- How much distance between two specific refineries is allowable for a given reduction in emissions (or Carbon tax here)?
 - emissions reduction between RG and R3 is (100%-60% = 40%) of RG initial emissions (*difference between x-values at A and C*)
 - Distance allowable between the refineries is (250km 150km = 100 km) (*difference between y-values at C and B*)
- Uppermost line is the higher emitter

RR - Refining (CO₂ tax reduction - base case)

Reduction in emissions (% of refining CO₂)

Typical value chain results

Value chains can be compared as well as single operations in the value chain

Typical value chain results: Energy

- "radius of reduction" methodology is demonstrated
- can be a useful tool for supply chain planning, purchasing or sales strategy
- ability to reduce energy and emissions are shown to be highest
- water usage and costs associated with a carbon tax are less avoidable through relocation.