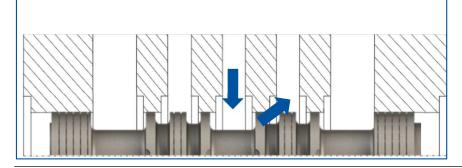


Design of electromechanical actuators for large sized valves

- 1 Main function of hydraulic control valves
- 2 Functional structure of hydraulic control valve
- 3 Electromechanical valve actuator design
- 4 Extended functional structure of hydraulic control valve
- 5 Conclusion

- 1 Main function of hydraulic control valves
- 2 Functional structure of hydraulic control valve
- 3 Electromechanical valve actuator design
- 4 Extended functional structure of hydraulic control valve
- 5 Conclusion



Main function of hydraulic control valves

Main function

 Opening/Closing of different flow paths [1] according to an electric control signal

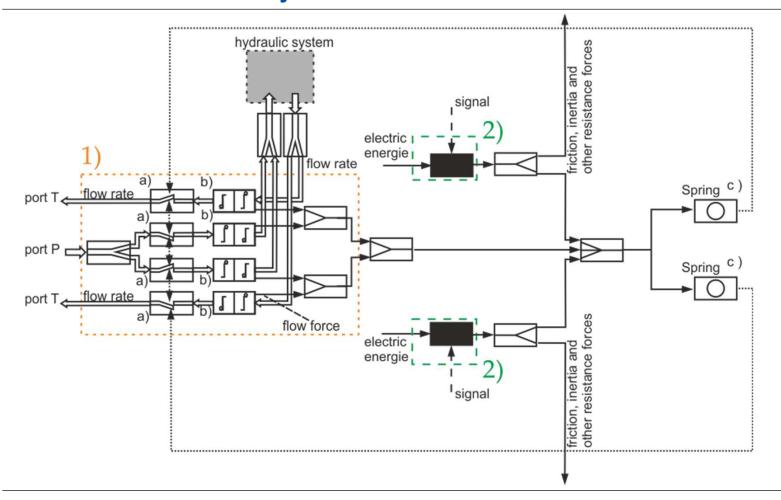
Conduction of hydraulic energy according to the position

Positioning of the spool according to an electric signal

- Position is controlled by a force
- Directional control valves
 - Force applied/not applied
- Applying force at the spool according to an electric signal

- 1 Main function of hydraulic control valves
- **2** Functional structure of hydraulic control valve
- 3 Electromechanical valve actuator design
- 4 Extended functional structure of hydraulic control valve
- 5 Conclusion

Symbols of functional structure


separate/connect material flow		energy flow
link/divide material flow		material flow
reduce/increase energy of material flow		information flow
link/divide energy flow		store energy
separate/connect energy flow		subsystem
convert energy flow		not further specified hydraulic system

[2],[3],[4]

Functional structure of hydraulic control valve

Subsystem 1)

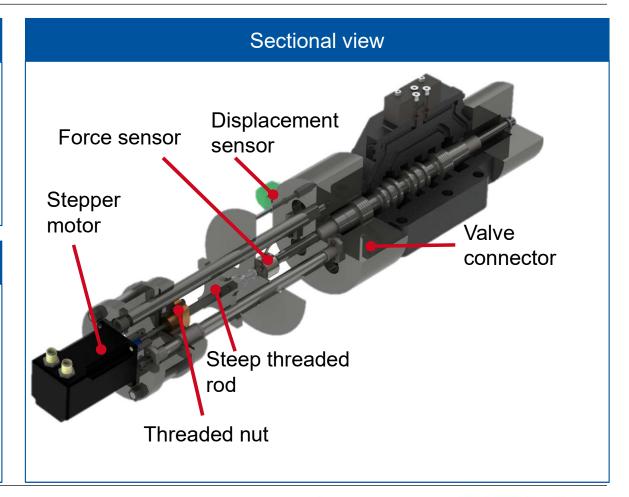
Conduct flow rate by the geometry

Subsystem 2)

• Switch + Converter

[5]

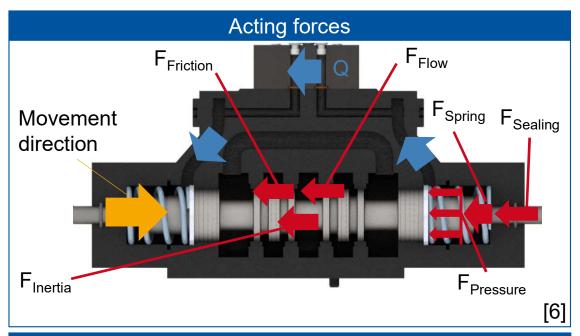
- 1 Main function of hydraulic control valves
- 2 Functional structure of hydraulic control valve
- 3 Electromechanical valve actuator design
- 4 Extended functional structure of hydraulic control valve
- 5 Conclusion


Electromechanical valve actuator

Design process

- Evaluation of different electrical converter
 - Electric motor
- Mechanical converter is necessary
 - Steep threaded rod
 - No energy conversion → not illustrated in functional structure

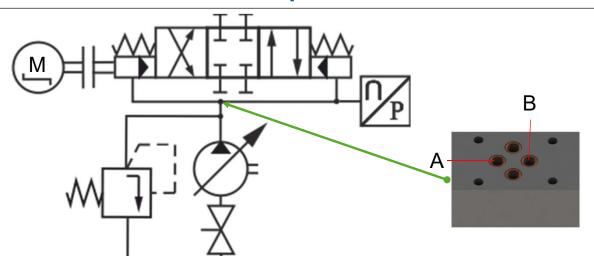
General conditions

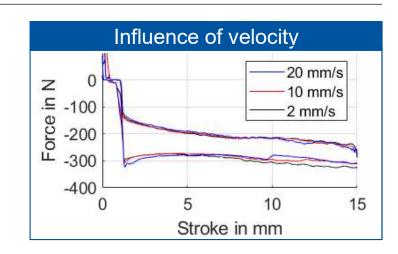

- Designed for large sized directional control valves
 - Nominal size 25
- Externally attached
- Definition of force requirements based on common pilot operated hydraulic valve

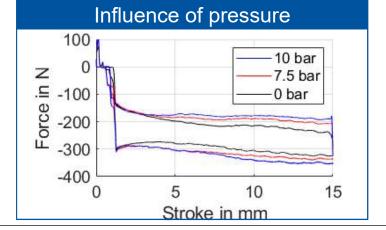
Forces at direct electromechanical actuated valves

Adapter plate

- Adapter plate attached instead of pilot valve
 - Short circuiting of both pilot chambers
 - Constant volume
- Reduced resistance force
 - No pressure rise in the pilot chambers
 - F_{pressure} nearly negligible

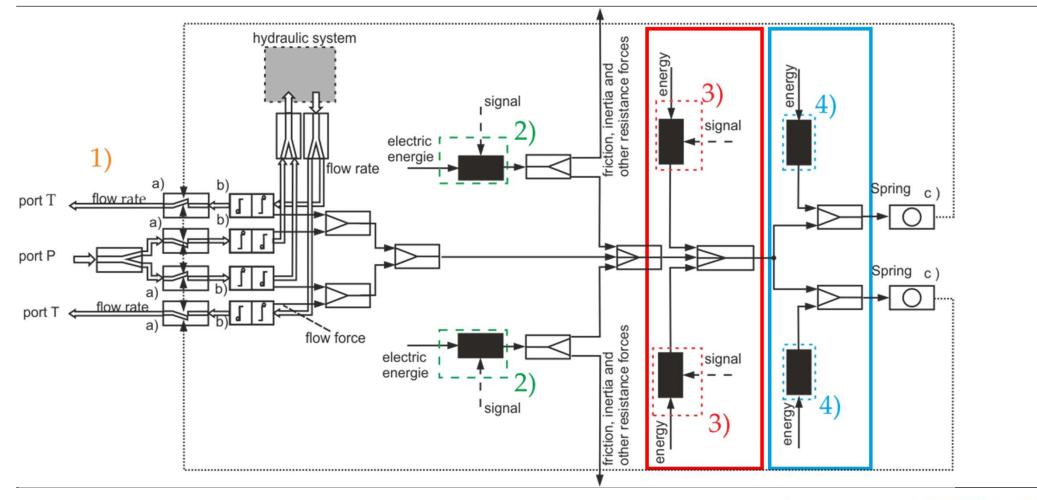

Additional sealing


- Actuator force is transmitted mechanical to spool
 - Additional sealing
 - External leakage
 - Friction force F_{Sealing} = f(p)


Measurements of effects in pilot chambers

System

- All ports closed
- Adapter plate attached
- Measuring port in adapter plate pressurized
- Pressure and velocity varied



- 1 Main function of hydraulic control valves
- 2 Functional structure of hydraulic control valve
- 3 Electromechanical valve actuator design
- 4 Extended functional structure of hydraulic control valve
- 5 Conclusion

Extended functional structure of hydraulic control valves

Innovative valve actuation systems

Positioning of the spool

Move spool to position

Hold spool in position

Move spool into centered position

According to operation cycle

In case of power outage

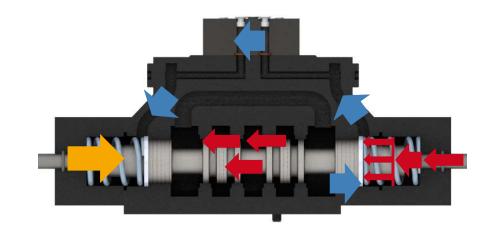
Separation and redistribution

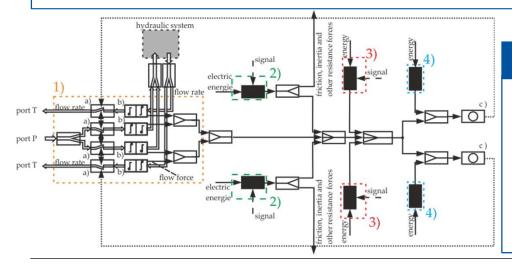
- Peak operation of main actuator
- Hold spool in position by second actuator
- Reduces requirements
 - Clamping
 - Orthogonal movement direction

Separation and redistribution

- Active centering
- No centering in case of power outage
 - Mechanical storages (springs)
- Preload springs
 - Additional actuator is necessary
- Holding of preloaded springs
 - Small necessary strokes

- 1 Main function of hydraulic control valves
- 2 Functional structure of hydraulic control valve
- 3 Electromechanical valve actuator design
- 4 Extended functional structure of hydraulic control valve
- 5 Conclusion





Conclusion

Electromechanical actuator design

- Investigation of presented actuator
- Externally attached
 - Effects by additional sealing
 - Pressure in pilot chamber need to be avoided
 - Adapter plate

Functional structure

- Expansion lead to innovative actuators
 - Combination
 - Reduction of requirements
- Proposed solution
 - Preload springs

Thank your for your attention

Contact

Tobias Vonderbank, M.Sc. *Academic staff*

e-Mail: tobias.vonderbank

@ifas.rwth-aachen.de

Phone.: +49 241 80 47722

References

- [1] W. Backé and W. Hahmann, *Grundlagen der Ölhydraulik: Umdr. zur Vorlesung*: Institut für hydraulische und pneumatische Antriebe und Steuerungen der RWTH (IFAS), 1974
- [2] Konstruktionsmethodik, 2222. 1997
- [3] J. Feldhusen and K.-H. Grote, Eds., *Pahl/Beitz Konstruktionslehre: Methoden und Anwendung erfolgreicher Produktentwicklung,* 8th ed. Berlin, Heidelberg: Springer-Verlag GmbH, 2013
- [4] R. Koller and N. Kastrup, *Prinziplösungen zur Konstruktion technischer Produkte*: Springer-Verlag GmbH, 2013
- [5] H. Janocha, *Unkonventionelle Aktoren: Eine Einführung*. München: Oldenbourg Wissenschaftsverlag GmbH, 2010.
- [6] K. Schrank and H. Murrenhoff, "Beschreibung der Strömungskraft in Längsschieberventilen mittel Impulserhaltung," O+P Journal, no. 4, pp. 4–15, 2013.

