IeCAT 2020 **1st International Electronic Conference on Actuator Technology: Materials, Devices and Applications** Materials, Devices and Applications

Linear motors based on piezoelectric MEMS

V. Ruiz-Díez¹, J. Hernando-García¹ and J.L. Sánchez-Rojas¹

¹Group of Microsystems, Actuators and Sensors, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

Academic Open Access Publishing since 1996

- Introduction
- Design and modelling
 - Travelling-wave based
 - Standing-wave based
- Materials and methods
- Results
- Conclusions

Motivation

Increasing interest in miniaturised **MEMS**-based **linear motors**

Source: Web of Science[™]

Application requirements for linear motors

- Large displacement
- High output force
- Energy efficiency
- High speed
- High positional precision

Miniaturisation benefits

- Improved performance
- Compact size
- Low power consumption
- Low manufacturing costs
- Array configuration

Ultrasonic motors

Classification

- Elastic vibration nature
 - Travelling-wave (TW)
 - Standing-wave (SW)
- Axis of movement
 - Rotational
 - Linear
- Directionality
 - Unidirectional
 - Bidirectional

MEMS-based motors

- Electro-thermal actuation
- Pressure-driven
- Piezoelectric actuation
 - All-electrical scheme
 - High efficiency
 - High output forces
 - Scaling down to the micrometric size

Our work: MEMS (Silicon+AIN) + 3D printed legs

Description of the motor

Bridges

- Length = 10 mm
- Width = 2 mm
- Substrate thickness = 30 μm
- Piezoelectric thickness = 1 μm

Flexural modes

Travelling-wave actuation Introduction

Ideal TW: $w(x,t) = Asin(kx - \omega t) = A\left(sin(kx)\cos(\omega t) - sin\left(kx + \frac{\pi}{2}\right)\cos\left(\omega t + \frac{\pi}{2}\right)\right)$ Mode superposition (1D) of two contiguous modes:

 $w(x,t) = [Q_s \Phi_s(x) + Q_A \Phi_A(x)] \cos(\omega t) + [Q_s \Phi_s(x) - Q_A \Phi_A(x)] \cos(\omega t + \varphi)$

- Driving frequency (ω) \rightarrow mid-frequency between resonances
- Spatial quadrature \rightarrow Symmetric (Φ_s) + Antisymmetric (Φ_A) modes
- Temporal shift $(\varphi) \rightarrow 90^{\circ}$ phase shift
- Optimisation of contributions Q_s and Q_A with patch geometry:
 - Minimum SWR=max/min
 - Maximum <TW>=Avg.(envelope)

Travelling-wave actuation

Electrode optimisation

h

Travelling-wave actuation

Leg placement

Vertical displacement:

$$w(x,t) = A(x)\cos(\omega_f t + \theta(x))$$

Horizontal displacement:

$$u(x,t) = -h\frac{dw}{dx} = -h\left(A'(x)\cos\left(\omega_f t + \theta(x)\right)\right)$$
$$+h\left(A(x)\theta'(x)\sin\left(\omega_f t + \theta(x)\right)\right)$$

For elliptical trajectory:

 $A'(x) = 0 \rightarrow$ Central plateau

W

X

►U

Standing-wave actuation Introduction

- Linear trajectory of leg tip.
- High amplitude due to resonance.
- Bidirectionallity using two different modes (symmetric + antisymmetric)

Standing-wave actuation Leg position

(4,0) mode Forward direction Right region of crest

(5,0) mode Backward direction Left region of crest

Overlapped area Direction depending on mode

Standing-wave actuation

Electrode optimisation

Fabrication

Bridges

- Length = 10 mm
- Width = 2 mm
- Substrate (Si) thickness = 30 μm
- Piezoelectric (AlN) thickness = 1 μm
- Metallisation (Au) thickness = 500 nm
- Patches:
 - [970 2200] mm
 - [7800 9030] mm

Legs

- Length = 750 μm
- Diameter = 300 μm
- Silicone-based resin
- Position = 3.2 mm
 - TW: central plateau
 - SW: bidirectional region
- Cyanoacrylate glue

Characterization

- Electrical impedance
 - Performance of the piezoelectric layer
 - Figures of merit: frequency, Q-factor, conductance
- Laser Doppler vibrometry
 - Mode identification
 - TW & SW characterization
- Kinetic
 - High FPS digital video camera (200 FPS, x100 objective)
 - Computer controlled AWG
 - Motion tracking software
 - 2mg, 15x3x0.02 mm silicon slider

Electrical impedance

Optical characterization

SW (4,0) mode

15.25 kHz 0° phase difference $\overline{w} \sim 320 nm/V$

SW (5,0) mode

24 kHz 180° phase difference $\overline{w} \sim 240 \ nm/V$

TW (4,0)&(5,0) mode

19.55 kHz 90° phase difference $\langle TW \rangle = 4.76 nm/V$, SWR = 1.6

Kinetic characterization

Speed

Kinetic characterization

Nanopositioning

- Design of efficient linear MEMS-based piezoelectric motors.
- Hybrid technology: MEMS resonator + 3D-printed legs
- Modelling and optimisation of the wave-driven stator:
 - Travelling-wave
 - Standing-wave
- Maximum conveyor speed at 10V with 2mg slider:
 - 1.2 mm/s in TW operation mode
 - 25 mm/s in SW operation mode
- Minimum step as low as 70 nm.

Thanks for your attention