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Objectives in research of microactuators
= Large working ranges
= Fast and precise motion

= Multistability
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Stick and Slip [Edeler2011]

Impact mechanism [Mita2003]

Electromagnetic levitation [Poletkin2017]
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Motivation |

Objectives in research of microactuators

= Large working ranges Stick and Slip [Edeler2011]
= Fast and precise motion Impact mechanism [Mita2003]
= Multistability Electromagnetic levitation [Poletkin2017]

Common problems
= Mechanical limitations
= High dependence on friction

= Permanent energy input
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Objectives in research of microactuators

= Large working ranges

= Fast and precise motion

= Multistability

Common problems

= Mechanical limitations

= High dependence on friction

= Permanent energy input
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Magnetic microactuator concept
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Free motion
Bistability by permanent magnets
Cooperative actuator mechanism

Efficient design and control
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Motivation Il

Design and control goals
= Robust equilibrium positions
= Energy optimal and fast motion

= QOpimised cooperation

Problem formulation
= Coupling of design and control

= Contradictory goals
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Motivation Il

Design and control goals

= Robust equilibrium positions

= Energy optimal and fast motion

= QOpimised cooperation

Problem formulation

= Coupling of design and control

= Contradictory goals
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Co-design: Simultaneous design
and controller optimisation
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Motivation

System description
Control approach
Co-design
Simulation results

Summary and Outlook
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System Description

Working Principle

Glass tube
= Proof mass initially on the piezoactuator

Magnetic proof mass

Piezoelectric staple actuator
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System Description

Working Principle

Glass tube
= Proof mass initially on the piezoactuator

= Initial acceleration (Kick) by piezoactuator
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Magnetic proof mass

Piezoelectric staple actuator
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System Description

Working Principle

Glass tube
= Proof mass initially on the piezoactuator
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.. : : : Electromagneti lenoi
= Initial acceleration (Kick) by piezoactuator ectromagnetic solenoid
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= Electromagnetic control (Catch) in upper position
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Magnetic proof mass

Piezoelectric staple actuator
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System Description

Working Principle

Glass tube
= Proof mass initially on the piezoactuator

.. : : : Electromagneti lenoi
= Initial acceleration (Kick) by piezoactuator ectromagnetic solenoid

 SeYeleee

= Electromagnetic control (Catch) in upper position Permanent magnets
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= Stable levitation without input :
Magnetic proof mass

Piezoelectric staple actuator
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System Description

Working Principle

Glass tube
= Proof mass initially on the piezoactuator

.. : : : Electromagneti lenoi
= Initial acceleration (Kick) by piezoactuator ectromagnetic solenoid
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= Electromagnetic control (Catch) in upper position Permanent magnets

= Stable levitation without input :
Magnetic proof mass

= Downwards motion by electromagnetic control
Piezoelectric staple actuator
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System Description

Equations of Motion

= Electromagnet
(current)

= Pjezoactuator
(deflection)

= Proof mass
(vertical motion)
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System Description

Equations of Motion

ds
= Electromagnet L— = uy, — R

(current)

= Pjezoactuator
(deflection)

= Proof mass
(vertical motion)
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System Description

Equations of Motion

15

Electromagnet

(current)

Piezoactuator

(deflection)

Proof mass

_1 — Win — .
L P U RZ

(vertical motion)
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UA
Umax

Contact force F.(d,d,z,#) adapted from [Specker2015]
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System Description

Equations of Motion

= Electromagnet L— = uy, — R
dt
(current)

. : : Finax
= Piezoactuator Md=—~Mg—cad — kad — F.(d,d, 2z, %) + ——up
(deflection) Umax

= Proof mass mi = —mg — Fu(2) + Fy(d,d, 2, 2) + Fom(2,1) + Z Fom,;(2)

(vertical motion) J

Contact force F(d, d, z, 2) adapted from [Specker2015]
Permanent magnetic force  Fy,, (2) ~ Bp Bpm,

Electromagnetic force Fep,(2) ~ By i
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Motivation

System description
Control approach
Co-design
Simulation results

Summary and Outlook
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Control Approach

Piezoactuator: Feedforward control

U
Input voltage spike for impulse-like acceleration with ua = 2 (exp (

0.53

Electromagnet: Flatness-based control
Assumption: The proof mass remains below the solenoid centre

» System model is flat with respectto z
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Control Approach

Piezoactuator: Feedforward control

Input voltage spike for impulse-like acceleration with ua =

Electromagnet: Flatness-based control

Up
0.53 (eXp (

Assumption: The proof mass remains below the solenoid centre

» System model is flat with respect to z
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Given a trajectory Zzref, inversely compute the necessary feedforward input Uyef

Exact feedback linearisation

Application of a linear quadratic regulator for disturbance compensation
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Control Approach

Flathess-based Control

Lref

Inverse
system
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Control Approach

Flathess-based Control

State transformation

=z %14 — &=z % 7
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Lref
—_—

Inverse

system
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Control Approach

Flatness-based Control

State transformation

=z %14 — &=z % 7

——> System

€

£r (%
ret | |nverse sys. | Urel Feedback
and transf. linearisation
A
State
transformation
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Control Approach

Flatness-based Control

State transformation

=z %14 — &=z % 7

System

€

£r (%
ret | |nverse sys. | Urel Feedback
— > . . .
and transf. linearisation
A
gref s
> Controller
S State
transformation
23 23.-27.11.2020 | 1st International Electronic Conference on Actuator Technology Michael Olbrich University of Augsburg |

Chair of Control Engineering




Control Approach

Reference trajectory generation

= Parameterise motion z.. by its third derivative
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Control Approach

Reference trajectory generation

= Parameterise motion z.. by its third derivative

= Divide transient time 1 into equal intervals
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Control Approach

Reference trajectory generation

= Parameterise motion z.. by its third derivative
= Divide transient time 1 into equal intervals

= Assign constant trajectory parameters Z' ¢ = u;, t € [T;, Tji1]
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Control Approach

Reference trajectory generation

Parameterise motion z,.f by its third derivative

Divide transient time 1 into equal intervals

Assign constant trajectory parameters 2’ ¢ = u;, t € [T;, Tj11]

Satisfy terminal state constraints up to second order

» Achieve this with last three parameters
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Control Approach

Overall Procedure

= Start at lower position t="1y,
g 2
o P
N
Z|OWO ________________________________ !
0 Tf
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Control Approach

Overall Procedure

= Start at lower position t="1y,
= Kick proof mass upwards (Piezo) To <t <Tj
g 2
g "
(oY
Z Gt ————— J
ow
0o T ] Tf
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Control Approach

Overall Procedure

= Start at lower position t =1
= Kick proof mass upwards (Piezo) To <t <Tj
= Controlled catch in upper position (Electromagnet) T <t <T5

OT1 T T
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Control Approach

Overall Procedure

= Start at lower position t =1
= Kick proof mass upwards (Piezo) To <t <Tj
= Controlled catch in upper position (Electromagnet) T <t <T5
= Hold proof mass without input (Permanent magnets) Ty <t <13y

=

k=

N

OT1 T T T
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Control Approach

Overall Procedure

= Start at lower position t =1
= Kick proof mass upwards (Piezo) To <t <Tj
= Controlled catch in upper position (Electromagnet) T <t <T5
= Hold proof mass without input (Permanent magnets) Ty <t <13y
= Controlled motion downwards (Electromagnet) T3 <t <1y

=

k=

N
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Control Approach

Overall Procedure

= Start at lower position t =1
= Kick proof mass upwards (Piezo) To <t <Tj
= Controlled catch in upper position (Electromagnet) T <t <T5
= Hold proof mass without input (Permanent magnets) Ty <t <13y
= Controlled motion downwards (Electromagnet) T3 <t <1y

= Hold proof mass without input (Permanent magnets and Piezo) 7, < ¢

Z
up

Z 1n m

zZ
low

OT1 T T T T

33 23.-27.11.2020 | 1st International Electronic Conference on Actuator Technology | Michael Olbrich | University of Augsburg | Chair of Control Engineering



Motivation

System description
Control approach
Co-design
Simulation results

Summary and Outlook
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Co-Design

Simultaneous Design and Controller Optimisation

Controller objective: min,, J; Design objective: min,,, Jq
= Short transient times = Stable equilibrium positions
= Low input effort = Robustness

= Small overshoot
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Co-Design

Simultaneous Design and Controller Optimisation

Controller objective: min,, J; Design objective: min,,, Jq
= Short transient times = Stable equilibrium positions
= Low input effort « > Contradictory goals < » = Robustness

= Small overshoot
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Co-Design

Simultaneous Design and Controller Optimisation

Controller objective: min,, J;

Contradictory goals <

= Short transient times

= Low input effort « >

= Small overshoot

0.3
gravitational force

- 02k weak magnetic field
=
R=

2
S
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Design objective: min,,, Jq
= Stable equilibrium positions

= Robusthess
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Co-Design

Simultaneous Design and Controller Optimisation

Controller objective: min,, J; Design objective: min,,, Jq
= Short transient times = Stable equilibrium positions
= Low input effort « > Contradictory goals < > = Robustness

= Small overshoot

Optimal trade-off by minimising a common cost function

ming,, ,, WaJd + wyJi
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Co-Design

Simultaneous Design and Controller Optimisation

Controller objective: min,, J; Design objective: min,,, Jq
= Short transient times = Stable equilibrium positions
= Low input effort « > Contradictory goals < » = Robustness

= Small overshoot

Ji = Zwl(zeq —2)% + w2’ Ja = (Fom(0) = Fret)® + (Fpm(%eq) — Fg)?
+wsi® + wyu +(VFym(Zeq) — VEFrer)?

Optimal trade-off by minimising a common cost function

ming,, ,, WaJd + wyJi
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Co-Design

Optimisation Variables

Design parameters pq

= Remanence values B}, By, ;

= Permanent magnet centres zpm,j

Solenoid centre Zem }

Control parameters Pt

40

Piezo voltage spike Up
Controller switch on time  7i;.i
Trajectory parameters 1,

Transient time 1}
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Motivation

System description
Control approach
Co-design
Simulation results

Summary and Outlook
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Simulation Results

Co-Design

= Optimise motion from lower to upper equilibrium and back
= Maximum allowed time for each direction: 0.15s
= Transient time is divided into 9 intervals with individual wu;

= Use genetic algorithm due to non-convexity and discontinuity
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Simulation Results

Co-Design

Superimposed magnetic field Optimised trajectory

4
F g Reference equilibrium
0.2 g - 2
. ref " | \ ! !
a v F N 0 ______________________________________
- ref 0 0.1 0.2 0.3 0.4 0.5
o 0 B
=
2 1
: -
02+t = 0.5
2
] | | | | = 0 I | | |
0 1 2 3 4 5 0 0.1 0.2 0.3 0.4 0.5
Z In mm

tins
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Simulation Results

Co-Design

Superimposed magnetic field

= Close to reference gradient and forces

= Results in robust equilibria

Fom in mN
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Simulation Results

Co-Design

Superimposed magnetic field
= Close to reference gradient and forces
= Results in robust equilibria

= Both permanent magnets are relevant

Fpm in mN
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Simulation Results

Co-Design

Superimposed magnetic field

Close to reference gradient and forces

Results in robust equilibria

Both permanent magnets are relevant

Fpm in mN
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Optimised trajectory
= Fast transient motion with small overshoot

= Exploitation of the initial kick

g ¢ Reference equilibrium
i Cooperative trajectory
:1 0 ............. ‘ ........ ) L |
0.2 0.3 0.4 0.5
= 40
& 20
€ 0
= | | | |
0.2 0.3 0.4 0.5
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Simulation Results

Co-Design

Superimposed magnetic field Optimised trajectory

= Close to reference gradient and forces = Fast transient motion with small overshoot

= Results in robust equilibria = Exploitation of the initial kick

= Both permanent magnets are relevant = Improvement in comparison with electromagnet

Reference equilibrium
Cooperative trajectory

ZE ----- Electromagnetic Control
= 0.3 0.4 0.5
8
=
| |
0.1 0.2 0.3 0.4 0.5

tin s

47 23.-27.11.2020 | 1st International Electronic Conference on Actuator Technology | Michael Olbrich | University of Augsburg | Chair of Control Engineering lN k



Simulation Results

Flathess-based Control

Evaluate controller under model mismatch

= 4
F = J e m - - - = =Reference trajectory
0.2} Lem T T ° A S
7, P RS - T I:ref " ’ A
a . A ~ ~ | ™ 0 \ | ~ I 1 ]
— ’ ~ 0 0.1 0.2 0.3 0.4 0.5
o — 0 P ~
v ~ ~
g . > 40 .
02r -~ - .- 20 ! 1
S~ P Op smmmm—m—— s~y -
I I 1 I I ! I I 5 N L \‘ ~ 7 | 1 ]
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.1 0.2 0.3 0.4 0.5
zZ in mm tins
[
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Simulation Results

Flathess-based Control

Evaluate controller under model mismatch

= Control the system under a different magnetic field than for trajectory generation

o 4
F g — = = =Reference trajectory
0.2+ m ==~ Fg o 2 \ Controlled trajectory
ZE FrEf N O | | 1 ]
- disturbed 0 0.1 0.2 0.3 0.4 0.5
s 0
=
2 > 40 s
= =
-0.2 .= 20
-~ “E 0
I ] | I ] L ] | = | ! ! ] ]
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.1 0.2 0.3 0.4 0.5
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Simulation Results

Flathess-based Control

Evaluate controller under model mismatch

Control the system under a different magnetic field than for trajectory generation

4
F é = = =Reference trajectory
02t e m T == o -Fg = 21 4 \ Controlled trajectory
ZE _Fref S | ‘ | I |
I 0 disturbed 0 0.1 0.2 0.3 04 0.5
g
<9 > 40 L/ \ﬁ_
0.2 g 20
~ o Sy
| | | | | | | | £ 0N | ~/' | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 0 0.1 0.2 0.3 0.4 0.5
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[
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Simulation Results

Flathess-based Control

Evaluate controller under model mismatch
= Control the system under a different magnetic field than for trajectory generation

= The largest error is at the beginning (kick not optimised for this magnetic field, no control active)

F = = = Reference trajectory
0.2r LmT T T TS Fg Controlled trajectory
:‘Za - - =T T ref | . |
S — Fdisturbed 0 0.1 0.2 0.3 0.4 0.5
=)
o
=
-0.2 ~ o

0.4 0.5
z in mm tins
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Simulation Results

Flathess-based Control

Evaluate controller under model mismatch
= Control the system under a different magnetic field than for trajectory generation
= The largest error is at the beginning (kick not optimised for this magnetic field, no control active)

= Control even possible under large mismatches, but limited in vicinity of solenoid centre

F = = =Reference trajectory
0.2 A P g Controlled trajectory
et - . -=-=F
, ref , | |
= u —F,
- disturbed 0 0.1 0.2 0.3 0.4 0.5
or— 0
i
L3
-0.2 - S

0.4 0.5
Zz 1n min tin s
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Motivation

System description
Control approach
Co-design
Simulation results

Summary and Outlook

53 23.-27.11.2020 | 1st International Electronic Conference on Actuator Technology | Michael Olbrich | University of Augsburg | Chair of Control Engineering



Summary and Outlook

Novel cooperative microactuator concept
Bistability by superposition of permanent magnets
Co-design for optimizing cooperative microactuators

Nonlinear control under model mismatch

Multistability by using more permanent magnets
Additional solenoids for increased effectiveness

Implement sensing coils and included the
positioning into the co-design

Model verification with real data

54
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