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Motivation I

Objectives in research of microactuators

 Large working ranges Stick and Slip [Edeler2011]

 Fast and precise motion Impact mechanism [Mita2003]

 Multistability Electromagnetic levitation [Poletkin2017]
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 Multistability Electromagnetic levitation [Poletkin2017]

Common problems

 Mechanical limitations

 High dependence on friction

 Permanent energy input
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Objectives in research of microactuators

 Large working ranges

 Fast and precise motion

 Multistability

Common problems

 Mechanical limitations

 High dependence on friction

 Permanent energy input
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Magnetic microactuator concept

 Free motion

 Bistability by permanent magnets

 Cooperative actuator mechanism

 Efficient design and control
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Motivation II

Design and control goals

 Robust equilibrium positions

 Energy optimal and fast motion

 Opimised cooperation

Problem formulation

 Coupling of design and control

 Contradictory goals
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Motivation II

Design and control goals

 Robust equilibrium positions

 Energy optimal and fast motion

 Opimised cooperation

Problem formulation

 Coupling of design and control

 Contradictory goals
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Co-design: Simultaneous design              

and controller optimisation
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System Description

 Proof mass initially on the piezoactuator

8

Working Principle

Magnetic proof mass

Piezoelectric staple actuator

Glass tube
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System Description

 Proof mass initially on the piezoactuator

 Initial acceleration (Kick) by piezoactuator

 Electromagnetic control (Catch) in upper position
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Working Principle

Electromagnetic solenoid

Magnetic proof mass

Piezoelectric staple actuator

Glass tube
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System Description

 Proof mass initially on the piezoactuator

 Initial acceleration (Kick) by piezoactuator

 Electromagnetic control (Catch) in upper position

 Stable levitation without input
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Working Principle

Permanent magnets

Electromagnetic solenoid

Magnetic proof mass

Piezoelectric staple actuator

Glass tube
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System Description

 Proof mass initially on the piezoactuator

 Initial acceleration (Kick) by piezoactuator

 Electromagnetic control (Catch) in upper position

 Stable levitation without input

 Downwards motion by electromagnetic control
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Working Principle

Permanent magnets

Electromagnetic solenoid

Magnetic proof mass

Piezoelectric staple actuator

Glass tube
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System Description

 Electromagnet

 Piezoactuator

 Proof mass

13

Equations of Motion

(current)

(deflection)

(vertical motion)
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 Electromagnet
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Contact force adapted from [Specker2015]

15

Equations of Motion

(current)

(deflection)

(vertical motion)

23.-27.11.2020        |        1st International Electronic Conference on Actuator Technology        |        Michael Olbrich        |        University of Augsburg |        Chair of Control Engineering



System Description

 Electromagnet

 Piezoactuator

 Proof mass

Contact force adapted from [Specker2015]

Permanent magnetic force

Electromagnetic force
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Equations of Motion

(current)

(deflection)

(vertical motion)
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Control Approach

Piezoactuator: Feedforward control

Input voltage spike for impulse-like acceleration with

Electromagnet: Flatness-based control

Assumption: The proof mass remains below the solenoid centre

 System model is flat with respect to
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Control Approach

Piezoactuator: Feedforward control

Input voltage spike for impulse-like acceleration with

Electromagnet: Flatness-based control

Assumption: The proof mass remains below the solenoid centre

 System model is flat with respect to

 Given a trajectory , inversely compute the necessary feedforward input

 Exact feedback linearisation

 Application of a linear quadratic regulator for disturbance compensation
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Control Approach

Flatness-based Control

20

System
Inverse 

system
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Control Approach

Flatness-based Control
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System
Inverse 

system

State transformation
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Control Approach

Flatness-based Control
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System
Inverse sys. 

and transf.
Feedback

linearisation

State

transformation

Controller

State transformation
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Control Approach

 Parameterise motion by its third derivative

24

Reference trajectory generation
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Control Approach

 Parameterise motion by its third derivative

 Divide transient time       into equal intervals

 Assign constant trajectory parameters

 Satisfy terminal state constraints up to second order

 Achieve this with last three parameters
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Reference trajectory generation
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Control Approach

 Start at lower position
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Overall Procedure
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Overall Procedure
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Control Approach

 Start at lower position

 Kick proof mass upwards (Piezo)

 Controlled catch in upper position (Electromagnet)

 Hold proof mass without input (Permanent magnets)

 Controlled motion downwards (Electromagnet)
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Control Approach

 Start at lower position

 Kick proof mass upwards (Piezo)

 Controlled catch in upper position (Electromagnet)

 Hold proof mass without input (Permanent magnets)

 Controlled motion downwards (Electromagnet)

 Hold proof mass without input (Permanent magnets and Piezo)

33

Overall Procedure
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Design objective:

 Stable equilibrium positions

 Robustness

Co-Design

Controller objective:

 Short transient times

 Low input effort

 Small overshoot

35

Simultaneous Design and Controller Optimisation
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 Small overshoot

36

Simultaneous Design and Controller Optimisation

Contradictory goals
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Simultaneous Design and Controller Optimisation

Contradictory goals

Optimal trade-off by minimising a common cost function
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Co-Design

Design parameters

 Remanence values

 Permanent magnet centres

 Solenoid centre

Control parameters

 Piezo voltage spike

 Controller switch on time

 Trajectory parameters

 Transient time

40

Optimisation Variables

Stability and robustness

Controlability and efficiency

Cooperation

Energy and time efficiency
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Simulation Results

 Optimise motion from lower to upper equilibrium and back

 Maximum allowed time for each direction: 0.15s

 Transient time is divided into 9 intervals with individual 

 Use genetic algorithm due to non-convexity and discontinuity
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Co-Design
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Simulation Results

Superimposed magnetic field
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Co-Design

Optimised trajectory

23.-27.11.2020        |        1st International Electronic Conference on Actuator Technology        |        Michael Olbrich        |        University of Augsburg |        Chair of Control Engineering



Simulation Results

Superimposed magnetic field

 Close to reference gradient and forces

 Results in robust equilibria
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Simulation Results

Superimposed magnetic field

 Close to reference gradient and forces

 Results in robust equilibria

 Both permanent magnets are relevant 
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Co-Design
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Optimised trajectory

 Fast transient motion with small overshoot

 Exploitation of the initial kick

Simulation Results

Superimposed magnetic field

 Close to reference gradient and forces

 Results in robust equilibria

 Both permanent magnets are relevant 
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Co-Design
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Optimised trajectory

 Fast transient motion with small overshoot

 Exploitation of the initial kick

 Improvement in comparison with electromagnet

Simulation Results

Superimposed magnetic field

 Close to reference gradient and forces

 Results in robust equilibria

 Both permanent magnets are relevant
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Co-Design
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Simulation Results

Evaluate controller under model mismatch
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Flatness-based Control
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Simulation Results

Evaluate controller under model mismatch

 Control the system under a different magnetic field than for trajectory generation
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Simulation Results

Evaluate controller under model mismatch

 Control the system under a different magnetic field than for trajectory generation

 The largest error is at the beginning (kick not optimised for this magnetic field, no control active)
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Simulation Results

Evaluate controller under model mismatch

 Control the system under a different magnetic field than for trajectory generation

 The largest error is at the beginning (kick not optimised for this magnetic field, no control active)

 Control even possible under large mismatches, but limited in vicinity of solenoid centre
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Flatness-based Control
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Summary and Outlook

54

Summary

 Novel cooperative microactuator concept

 Bistability by superposition of permanent magnets

 Co-design for optimizing cooperative microactuators

 Nonlinear control under model mismatch

Outlook

 Multistability by using more permanent magnets

 Additional solenoids for increased effectiveness

 Implement sensing coils and included the

positioning into the co-design

 Model verification with real data
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Thank you for your attention!
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