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Abstract: The objective of this study was to evaluate the nutritional composition, techno-functional, 
and in vitro physiological properties of flours from six different insect species (mealworm, beetle, 
caterpillar, ant, locust, and cricket). The chemical composition of insects was evaluated following 
the standard methods (AOAC). Bulk density, water holding capacity, oil holding capacity, water 
absorption capacity, swelling capacity, emulsifying activity, foaming capacity, and gelation capacity 
were measured. In vitro antioxidant capacity was measure by the direct ABTS method. 
Hypoglycemic (glucose adsorption and the inhibition of α-amylase, glucose diffusion, and starch 
hydrolysis) and hypolipidemic (cholesterol and bile salts binding and lipase inhibition capacities) 
were investigated using in vitro methods. Insect flours exhibited high content of protein (39.4-58.1%) 
and fat (17.7-50.1%) as main components, although the presence of chitin in ant samples was also 
highlighted. The techno-functional properties showed high oil holding, swelling, and emulsifying 
capacities in all insect flours analyzed, besides bulk density, hydration properties, and foaming 
capacity showing average values and no gelation capacity. Insects showed high antioxidant capacity 
(179-221 mg Trolox equivalents/g). Moreover, these edible insect flours revealed effective 
hyperglycemic and hyperlipidemic properties. Insect flours inhibited α-amylase activity (47.1-
98.0%) and retarded glucose diffusion (17.2-29.6%) and starch hydrolysis (18.2-88.1%). Likewise, 
they bound cholesterol and bile salts (8.4-98.6%) and inhibited lipase activity (8.9-47.1%). Hence, 
these insect flours might be of great interest to the food industry, being a healthy source of protein, 
exerting a positive impact on functional food properties, and potentially preventing the 
development of diseases associated with hyperglycemia and hyperlipidemia. 
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1. Introduction 

The demand for more sustainable food production has generated attention in insect 
consumption. The main reason for this raised interest in insects is their nutritional characteristics: 
insects are a source of high-quality and easily digestible protein, fat, chitin, and a great variety of 
micronutrients. For these reasons, insects are presented as a feasible solution to the global food 
shortage due to overpopulation, estimated for 2050 [1]. Despite numerous benefits of edible insect 
consumption, consumer acceptance still remains one of the barriers to their utilization as a protein 
food source, especially in the developed countries where insects are viewed in disgust by the majority 
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of the population [2]. On the contrary, there is a lack of scientifically based knowledge of insect 
processing to ensure food safety, primarily when these processes are carried out on an industrial scale 
[3]. Scientific evidence shows that edible insects’ nutritional quality is equivalent and sometimes 
exceeds that of animal-based foods [4]. Besides, insects protein fraction could have biological activity 
by releasing antioxidant peptides after enzymatic hydrolysis [5]. However, little is known about 
edible insects’ beneficial physiological properties and other components’ potential role in these 
properties. Hence, insects could be a source of new ingredients with beneficial health properties. 
Thereupon, this work aimed to assess the nutritional composition, techno-functional, and in vitro 
physiological properties of flours from six different insect species (mealworm, beetle, caterpillar, ant, 
locust, and cricket). 

2. Material and Methods 

2.1. Materials 

Six species of insects were purchased dried from different online stores specialized in the sale of 
insects for human consumption: Insectum (Valencia, Spain), BCN Insects (Barcelona, Spain), Europe 
Enthomophagie (Ruan, France) and Next Food (Ras al-Khaimah, United Arab Emirates). The 
analyzed edible insects corresponded to the four orders more consumed worldwide: mealworm 
(Tenebrio molitor, Coleoptera), beetle (Phyllophaga rugosa, Coleoptera), caterpillar (Nudaurelia melanops, 
Lepidoptera), ant (Oecophylla smaradigna, Hymenoptera), locust (Locusta migratoria, Orthoptera) and 
cricket (Acheta domesticus, Orthoptera). Samples were dehydrated by lyophilization, ground, and 
sieved, obtaining a flour with a particle size of 0.5 mm. 

2.2. Chemical composition analysis 

2.2.1. Proximate analysis 

Crude protein, crude fat, and total ash were assessed following official AOAC procedures [6]. 
The nitrogen of chitin must be considered for the quantification of protein [7]. The protein content 
(%) was calculated as followed:  

Crude Protein (%) = �sample N content ‒ N content in chitin� · 6.25 

2.2.2. Determination of chitin 

Samples (1.6 g) were hydrolyzed with 1 M HCl at 100 °C for 30 min. Four sample repetitions 
were made (two samples for chitin determination and two samples for nitrogen in chitin 
determination) [7]. Two filtered hydrolysates of each sample were dried at 105 °C for 24 h. The other 
two hydrolysates were used for the nitrogen contained in chitin determination by the Kjeldahl 
method [6]. The chitin content (%) was calculated using the equation: 

Chitin (%) = 
weight of the dry matter ‒ weight of burns crucibles

sample weight · 100 

2.2.3. Determination of trypsin inhibitor.  

Insects flours were subjected to overnight extraction using 0.02 M sodium phosphate buffer pH 
7.0 (1:10 w/v) at 4 °C and centrifuged (5000g, 25 min). The supernatants were stored at −20 °C. The 
protease-inhibitors concentration was analyzed using Nα-benzoyl-DL-arginine-p-nitroanilide 
hydrochloride (BAPNA) as a substrate [8].  

2.3. In vitro antioxidant capacity determination 

The direct in vitro antioxidant capacity was estimated by ABTS+ assay [9]. Insect flours (10 mg) 
were mixed with an ABTS+ solution (1.7 mL) for 5 min at 37 °C. All samples and standards were 
centrifuged (15600g, 5 min), and the absorbance of the supernatants was measured at 734 nm. The 
results were expressed as mg Trolox equivalents per gram (mg TE/g) of the dry sample. 
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2.4. Physicochemical and techno-functional properties 

Bulk density (BD), water holding capacity (WHC), oil holding capacity (OHC), water absorption 
capacity (WAC), swelling capacity (SWC), emulsifying activity (EA), foaming capacity (FC), and 
gelation capacity (LGC, last gelation concentration), were measured according to published protocols 
[9].  

2.5. Evaluation of the in vitro hypoglycaemic properties  

2.5.1. Glucose adsorption capacity 

Edible insect flours (0.25 g) and 25 mL of glucose solution (10, 50, 100, 200 mM) were mixed [9]. 
They were incubated at 37 °C for 6 h and were centrifuged (3500g, 15 min). The glucose assay kit 
(Megazyme KGLUC, Wicklow, Ireland) was used to determine the glucose adsorbed by the sample.  

2.5.2. In vitro α-amylase inhibition 

Edible insect flours (0.25 g) were mixed with 1 mg of α-amylase (Sigma-Aldrich, MO, USA) and 
a solution of potato starch (4% p/v, 10 mL) after that was incubated at 37 °C for 60 min. The samples 
were centrifuged (3500g, 15 min) and thesupernatant’s glucose content was determined using the 
assay kit KGLUC (Megazyme, Wicklow, Ireland). Residual amylase activity was determined in 
comparison with the control without insect flours [9].  

2.5.3. In vitro glucose dialysis retardation capacity 

It was estimated by evaluating the glucose dialysis retardation index (GDRI) [9]. The solution 
was made with 0.5 g of edible insect flours and 25 mL of glucose solution (50 mM) and was dialyzed 
against distilled water (80 mL) at 37 °C for 0-150 min. Finally, the content of glucose in the dialysate 
was measured using the assay kit KGLUC (Megazyme, Wicklow, Ireland). The GDRI was calculated 
as follows:  

GDRI = 100 ‒
[Glucose] in the dialysate with fiber addition

[Glucose] in the dialysate of control test ·100 

2.5.4. In vitro starch digestibility retardation.  

As previously described [9], a solution was formulated adding 0.2 g of flours, 4 mg of α-amylase 
(Sigma Aldrich, MO, USA), and 10 mL of potato starch solution (4% p/v) was dialyzed against 
distilled water (80 mL) at 37 °C for 0-150 min. The glucose assay kit was used to evaluate the glucose 
content in the dialysate. 

2.6. Evaluation of the in vitro hypolipidemic properties 

2.6.1. Cholesterol binding capacity 

Fresh egg yolks were diluted (9 times) using Milli-Q water and emulsified [9]. Edible insect 
flours (1 g) were mixed with diluted egg yolk (25 mL), and the pH was adjusted to 2.0 and 7.0. The 
flasks were incubated (37 °C, 2 h) with oscillation and centrifuged at 4000g for 15 min. The 
supernatant was diluted with acetic acid (90% v/v), mixed with o-phthalaldehyde and 96% H2SO4, 
and incubated under continuous stirring (60 °C, 30 min). The absorbance was measured at 550 nm. 
Pure cholesterol was used as a standard. 

2.6.2. Sodium cholate binding capacity 

Edible insect flours (0.25 g) were combined with 50 mg of sodium cholate (Sigma-Aldrich, MO, 
USA) and 25 mL of NaCl solution (0.15 M, pH 7.0) [9]. The final solution was held on the shaker for 
1 or 3 h, all of them at 37 °C and centrifuged at 4000g for 20 min. The absorption capacity was 
calculated as the percentage of absorbed sodium cholate. Samples were mixed with H2SO4 (45% v/v) 
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and of furfural (0.3% v/v) and incubated at 65 °C for 30 min. Absorbance was measured at 620 nm. 
Sodium cholate was used as a standard. 

2.6.3. In vitro pancreatic lipase inhibition 

A mixture solution was formulated, adding 0.1 g of edible insect flour, 10 mL of sodium 
phosphate buffer (0.1 M, pH 7.2), 2 mL of olive oil, and 2 mL of pancreatic lipase solution (0.75 mg 
pancreatic lipase/mL phosphate buffer). Samples were incubated at 37 °C for 1 h [9]. The content of 
free fatty acid released was determined by titrating with NaOH (0.05 M). A similar method was 
carried by adding bile salts (156.5 mg/mL) to evaluate the bile salts-binding effect on lipase activity. 
Lipase inhibitory activity (%) was defined as the percentage of decrease in the free fatty acid 
production rate over the control. 

2.7. Statistical Analysis 

Each sample was analyzed in triplicate (n = 3). Data were reported as mean ± standard deviation 
(SD). The data were analyzed using the T-test or one-way analysis of variance (ANOVA) and post hoc 
Tukey test. Relationships between the analyzed parameters were evaluated by computing Pearson 
linear correlation coefficients setting the level of significance at p < 0.05, p < 0.01, and p < 0.001. The 
statistical analysis was performed by SPSS 24.0. Multivariate analyses viz. principal component 
analysis (PCA) and hierarchical cluster analysis were performed with XLSTAT 2020 for Microsoft 
Excel 2016.  

3. Results 

3.1. Insect flours are a sustainable source of protein, chitin, and lipids 

Insect flours showed high content of protein (39.4-58.1%) and fat (17.7-50.1%) as main 
components, although the presence of chitin in ant samples was also highlighted (Figure 1A). The 
energy value depends on their two main components: protein and fat. Here, we observed a significant 
correlation (r = 0.999, p < 0.001; Figure 1B) between fat content and the insects’ energy value. Besides, 
insect flours exhibited high antioxidant capacity (179-221 mg Trolox equivalents/g), which was not 
associated with any chemical component measured.  

3.2. Insects flours’ physicochemical and techno-functional properties validated their use in food production 

Insect flours displayed high oil holding, swelling, and emulsifying capacities in all insect flours 
analyzed, besides bulk density, hydration properties, and foaming capacity showing average values 
and no gelation capacity (Figure 1A). Bulk density was significantly correlated with the content of 
protein (r = ‒0.855, p < 0.05), fat (r = 0.858, p < 0.01), and chitin (r = 0.688, p < 0.05) (Figure 1B). On the 
other hand, oil holding capacity significantly correlated with carbohydrates’ content (r = 0.850, p < 
0.05). Water holding and swelling capacities were significantly associated with the insect flours’ 
protein content (r = 0.784, p < 0.05 and r = 0.859, p < 0.01, respectively). 

3.3. Insect flours could retard intestinal glucose absorption reducing postprandial glycemia 

Edible insect flours revealed effective hyperglycemic properties. Mealworm flour revealed the 
highest glucose binding at high glucose concentrations (Figure 1A). Glucose adsorption was 
associated with the protein content (r = 0.697, p < 0.01) (Figure 1B). Insect flours inhibited α-amylase 
activity (47.1-98.0%). This inhibition exhibited a relationship with the protein content (r = 0.723, p < 
0.05) and the water holding capacity (r = 0.800, p < 0.05). Likewise, insect flours retarded glucose 
diffusion (17.2-29.6%) and starch hydrolysis (18.2-88.1%). Glucose diffusion retardation correlated 
with the water absorption and holding capacities (r = 0.717, p < 0.05 and r = 0.703, p < 0.05, 
respectively). Consistently, the retardation of starch digestion was associated with the delaying of 
glucose diffusion (r = 0.832, p < 0.05). 
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Figure 1. Agglomerative hierarchical cluster analysis coupled to heat map (from the lowest ( ) to the 
highest ( ) value for each parameter) showing the associations among the measured parameters and 
classifying insect flours according to them (A), chord diagram depicting the significant (p < 0.05) 
Pearson correlations (≥ |0.65|) between the chemical constituents of insect flours, techno-functional 
properties, and in vitro physiological properties (B), and Principal Component Analysis (PCA) 
representing each insect flour and the influence of the measured parameters on their classification 
(C). BD: Bulk density; WHC: water holding capacity; OHC: oil holding capacity; WAC: water 
absorption capacity; SWC : swelling capacity; EA: emulsifying activity; FC: foaming capacity; LGC: 
last gelation concentration; GDRI: glucose dialysis retardation index.  

3.4. Insect flours exhibited the ability to hinder lipids digestion diminishing their absorption 

Similarly, insect flours presented hypolipidemic properties. They bound cholesterol and bile 
salts (8.4-98.6%) (Figure 1A). A moderate correlation of chitin content with bile salt absorption 
capacity was showed (r = 0.508, p < 0.05). A higher correlation was shown with the content of fat (r = 
0.689, p < 0.05). Correspondingly, insect flour inhibited pancreatic lipase activity (8.9-47.1%), which 
exhibited a significant association with the bile salt-binding capacity (r = 0.731, p < 0.05). A significant 
positive correlation was shown between the concentration of trypsin inhibitor and lipase inhibition 
(r = 0.811, p < 0.05). 
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3.5. Insect flours were statistically classified according to their composition and properties 

The statistical analysis enabled us to classify the insect flour according to their nutritional value, 
techno-functional, and in vitro physiological properties (Figure 1A, C). The agglomerative 
hierarchical cluster analysis and the PCA showed a first group, which clustered mealworm and ant 
flours, standing out by their fat and chitin content and their ability to bind to cholesterol and bile 
salts. A second group comprised locust and cricket flours, with higher protein content and, therefore, 
higher water holding, swelling, and emulsifying properties and higher capacity to adsorb glucose 
and inhibit α-amylase. The third group assembled beetle and caterpillar flours, with medium protein 
and chitin contents but a better ability to retard in vitro starch digestion and inhibit lipase activity. 
Thus, insects may be a great option to be used as a novel healthy ingredient. 

4. Discussion 

Cultural and religious practices heavily influence entomophagy. Insects are commonly 
consumed as a food source in many regions of the world. However, in most Western countries, 
people view entomophagy with disgust and associate eating insects with primitive behavior [10]. 
Despite this, the European Food Safety Authority (EFSA) has approved five different insect species 
as novel foods [11] since the demand for more sustainable food production has generated attention 
in insect consumption. To date, a few scattered studies have analyzed edible insects’ nutritional 
value; however, these data are not always comparable due to the variation between insects and the 
varying methodologies employed to analyze the chemical composition [12]. Here we present the 
assessment of the nutritional composition of six of the most consumed insects worldwide. As 
expected, a high variability on the protein, chitin, and lipid contents was observed. In this sense, 
edible insects’ nutritional value is highly variable because of the wide range of edible insect species. 
Even within the same group of species, nutritional value may differ depending on the insect’s 
metamorphic stage, the habitat in which it lives, and its diet [13]. Regarding insect flours’ 
physicochemical and techno-functional properties have been studied mostly in protein isolates, but 
the whole flour has been undervalued [14]. As sustainable foods, the easier and cost-effective their 
obtention, the better. We propose their use as a complete ingredient, and thus, we assessed their 
functional properties to be included in food products. The variability in the insect flour chemical 
composition leads to a broad diversity of properties. As observed, techno-functional properties were 
associated with not only the protein content but with chitin, carbohydrates, and lipids. Similarly, 
insect flours’ health-promoting properties have been underestimated so far. A limited number of 
publications have focused on the association of insects’ chemical constituents and their potential 
biological activity [15]. This study reveals the hypoglycemic and hypolipidemic properties of six 
insect flours. Previously, research proved the ability of mealworm to reduce in vitro starch 
digestibility [16] and inhibit pancreatic lipase [17], and of cricket to lower LDL plasmatic cholesterol 
levels in rats [18]. Indeed, more research is needed to fully understand the potential of insects as 
functional foods or nutraceuticals. Future studies will unravel the biological activity of insects, and 
the mechanisms implied. Likewise, insects’ safety will be validated to ensure their use as a sustainable 
source of protein, chitin, and lipids, among other micronutrients and bioactive compounds. 

5. Conclusions 

This work presents a comprehensive analysis of the chemical composition, physicochemical, 
techno-functional, and in vitro physiological properties of six edible insect flours. Our findings 
confirm that insects are a sustainable source of protein, chitin, and lipids. Additionally, these flours 
foods may be valuable due to their physiological effects related to their hypoglycemic and 
hypolipidemic properties. These flours presented several applications due to their techno-functional 
properties. Upcoming works will extend the data presented in this study with the in vivo biological 
properties of insect flours, the technological, and the cooking applications  
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