

Multifunctional Smart Window based on Dielectric Elastomer Actuator

Presented by Milan Shrestha ^{1,*}

Co-authors: Gih-Keong Lau², Anand Asundi³ and Zhenbo Lu⁴

¹ Temasek Laboratories, National University of Singapore, Singapore 117411;
 ² Department of Mechanical Engineering, National Chiao Tung University, Taiwan 30010;
 ³ School of Mechanical and Aerospace Engineering, National University of Singapore, Singapore 639798;
 ⁴ School of Aeronautics and Astronautics, Sun Yat-Sen University, P. R. China, 510275;

* Correspondence: milan001@e.ntu.edu.sg; Tel.: +65-83600602

23-27 November 2020

Presentation Outline

- 1. Introduction
 - Window glasses requirements, transparency tunable glass, transparent acoustic absorbers
- 2. Literature Review
- 3. Problem Statement\ Solution
- 4. Methods and Results
 ▶Part 1: Transparency Tuning Device
 ▶Part 2: Tunable Acoustic Absorber
- 5. Conclusions and Future Work

Introduction

Background

- Glasses are used in high rise buildings to:
 - 1. Promote daylighting
 - 2. Isolate from outdoor noise
 - 3. Architectural aesthetics

Introduction

Types for Glass: Optical Aspects

- Allows direct daylight
- Clear visibility
- Privacy Issues
- Direct sunlight Glare
- Diffuse light
- Obscure visibility

Introduction

Glasses for Sound Absorption

Various designs of commercial micro-perforated glass exist

Curtains for Sound Absorption & Daylighting

- Curtains block light and absorb sound
- Adjusting is a hassle
- Recently few are designed to be translucent

https://www.gerriets.com/media/wysiwyg/downloads/certificate/acoustics-certificate/DE-versions/gc-DE-ABSORBER-LIGHT-Schallgutachten-DIN-EN-ISO-354.pdf

Current Need: Multifunctional Smart Window

- Need a Smart Window which can
 - Control transparency and
 - Absorb sound simultaneously

• Few window devices which can perform one of the functions are commercially available

Literature Review

Review: Transparency Tunable Glasses

Existing Smart Windows

Electrochromic Glass

- Electrochemically changes color
- Tunes transmittance from 5% to 65%
- Cost \$1000/sq.m (viewglass)

Polymer Dispersed Liquid Crystal Device (PDLC)

- Scatters light to appear opaque
- Tunes transmittance from 6% to 62%
- ➤ Cost (\$200-300/sq.m)
- ➢ Age upon prolonged UV exposure

Low-cost Approach: Surface Roughening

Surface wrinkling

Comparison: Existing Devices

- > Nanowires in indentation device scatters light and limits transmittance
- Thin-film wrinkling has larger visibility tuning range

Comparison: Thin Films Wrinkling Based Device

- High transparency at unwrinkled state is required
- Large in-plane compression is not applicable for window appliance

Performance Comparison of Thin Films								
Thin films	Indium Tin Oxide	Gold	Graphene Oxide	Silicate (treated)				
Electrical Property	Con	ductor	Insulator					
Tuning visibility		Duke Duke Duke Duke Duke Duke Duke Duke	RPI C	гг				
In-plane strain	37%	70%	400%	30%				

• Large in-plane compression makes these devices inapplicable as window appliance

Review: Acoustic Absorbers

Existing Transparent Acoustic Absorbers

- Resonating membrane or panel absorbs sound
- Designed for fixed low frequency sound of narrow bandwidth

- Helmholtz resonator principle
- Resonance of air-plug in the perforations also absorbs sound
- Designed for fixed low frequency sound
- Designed frequency depends on perforation size and Membrane thickness

Comparison: Existing Acoustic Absorber

[1] D. Herrin and J. Liu, "Properties and Applications of Microperforated Panels," Sound and Vibrations, 2011.

Motivation and Objectives

Problem Statement: Transparency Tuning

- Existing commercial technologies for transparency tuning are expensive
- Most of them have moderate transparency tuning range (e.g. 65% to 5% electrochromics)
- High continuous power consumption (e.g. 5-20 W/sq.m PDLC)
- Low cost approach using large area strain to form micro-wrinkles (e.g. >400% area change Graphene oxide)
- Low coverage to the windows due to large area strain

Problem Statement: Acoustic Absorption

- Porous absorbers are opaque
- Existing transparent acoustic absorbers have fixed narrow absorption bandwidth (e.g. panel absorber)
- They are inefficient to absorb noise with varying dominant frequency

Objectives:

- 1. To develop a low-cost smart window based on surface wrinkling
 - With large transparency tuning range and
 - Requires small area strain
- 2. To develop tunable acoustic absorbers which can adapt to broader bandwidth noise of varying dominant frequency

Part I Smart Window for tunable transparency Based on Surface-Wrinkling

Scattering of Light by Rough Surface

> Optical scattering is strongly dependent on surface roughness (σ) and refractive index mismatch

*P. Beckmann and A. Spizzichino, "The scattering of electromagnetic waves from rough surfaces," *Norwood, MA, Artech House, Inc., 1987, 511 p.,* 1987. **A. Spizzichino, *The Scattering of Electromagnetic Waves from Rough Surfaces. By P. Beckmann... and André Spizzichino*: Pergamon Press, 1963.

Electrically Unfolding Microwrinkles

Electrically controlling wrinkle amplitude using Dielectric Elastomer Actuators

Solution : Thin Film Material Selection

Problem Summary: Need for effective optical diffusion by surface microwrinkling under a small axial compression

- Material selection criteria to solve the problems
 - Highly transparent
 - Electrically conductive
 - Stiff (So that even nanometric coating can induce large microwrinkles at small strain)
 - ➢ High Refractive index (larger refractive index mismatch is better for scattering)
- ITO and AZO are possible but forms thermally induced wrinkles

Solution: Multilayer thin films of materials like ZnO or TiO₂ films and conductive materials like PEDOT:PSS (poly (3, 4-ethylene dioxythiophene)-poly styrene sulfonate)

Method & Results Experimental Work: PEDOT:PSS/TiO₂ Coating

- Titanium dioxide (TiO₂) thin films deposited at room temperature (38.79nm thick using E-beam evaporation deposition, Coaxial Power Systems) on 3 times pre-stretched VHB4905 membranes
- PEDOT:PSS is spin-coated (38.79nm thick) or inkjet printed on TiO_2 thin films

- Inline transmittance measurement: Spectrometer (AvaSpec-USB2 Fiber Optic), Halogen light source (AvaLight-Hal-S-Mini)
- Electrically activated : by high voltage power supply; current and voltage are logged; cyclic activation controlled by function generator 21

Results: Wrinkling of TiO₂/PEDOT:PSS Thin Films

- Wrinkles with amplitude of 0.585±0.085µm and pitch of 7-8µm forms under 4.5-5% radial compression
- Wrinkles formed at 5% compression strain, fully unfolds upon 2.85kV activation of DEA <u>3D Profile</u>

Results. Tuning transparency by DEA activation

- The wrinkled surface scatterers the light (full width at half-maximum angle = 44.77°)
- Tunes transparency from 1.8% transmittance to 81% upon activation (involves only 4% compression strain).

Device Performance and Reliability

Part II

Tunable Micro-Perforated Membrane Absorbers

Problem Summary: Fixed absorption spectrum of Narrow Bandwidth
 Proposed Solution: DEA-based tunable microperforated membrane absorbers (tunable broader absorption spectrum)

Proposed Solution: Tunable MPDEA Absorber

• MPP's absorption frequency depends on perforation size and membrane tension

Resonant Frequency assuming Helmholtz Resonator $f = \frac{c}{2\pi} \sqrt{\frac{\pi a^2}{(2b)^2 \cdot H \cdot (2h)}}$ where, c is velocity of sound Voltage induced stress change $\Delta \sigma_1^{\infty} = -\frac{\nu P_e}{1 - \nu}.$ where, $P_e = \frac{\epsilon_r \epsilon_o \left(\frac{V}{t}\right)^2}{2}$ electrostatic pressure, ν is the elastomer's Poisson's ratio, V is the applied voltage and t is the membrane thickness, ϵ_0 is the vacuum permittivity, ϵ_r is the dielectric

constant. <u>Voltage induced reduction</u> <u>in hole radius</u>

 $\Delta a(V) = \frac{v}{1-v} \frac{P_e}{E} \left[b + \frac{a^2}{b} - 2a - v \left(b - \frac{a^2}{b} \right) \right]$

• Absorption spectrum of an microperforated membrane absorber is modeled by Maa et. al. and Y. Li et. al. *

*Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. *Applied Physics Letters*, 108(6), 063502.

** Lu, Z., Shrestha, M. & Lau, G.-K. Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer 26 actuator. *Applied Physics Letters* **110**, 182901, doi:10.1063/1.4982634 (2017).

Experiment

- Impedance Tube (770mm long) Setup used to characterize absorption property of cavity backed resonant absorber
- Two microphone method used
- Microphone switch method used for phase and amplitude correction

Transparent Tunable MPDEA Absorbers

- ➤ 2-layered MPDEA were ~70% transparent
- \blacktriangleright Hole diameter reduced by >15% at 5.5kV

Voltage ramp up to reduce hole size and shift absorption peak

(d) Shifting absorption spectrum by DEA activation (c) Optical transparency of the absorbers 100 8.0 8 0.6 0.4 0.4 0.2 6k\ Absorption 80 Tspec (%)5kV 60 5.2% ♦ shift ♦ 40 1 Layer MPDEA 992 Hz 1170 Hz 20 2-layer MPDEA 2 Layer MPDEA 0 0 200400 600 800 1000 1200 1400 400 500 600 Wavelength (nm) 700 Frequency [Hz]

a(V)/a° 0 0 0 0

current (µA)

Leakage

0.2

0.1

()

Absorption Bandwidth at α =0.8 is 444Hz from 846Hz-1290Hz

Resonant Frequency is shifted from 1170Hz to 992Hz upon activation

(b) Perforation diameter reduction by DEA voltage activation

1-layer MPDEĀ

2-layer MPDEA

2 3 4 Voltage (kV)

6

5

Conclusions

Transparency Tuning Using DEA

- High performance, low cost transparency tuning device based on surface wrinkling with TiO₂/PEDOT:PSS transparent coating layer
- Electrically transparency is tuned from 81% to 1% with less than 5% in-plane radial compression is obtained using DEA

V=0kV

V=2.85kV

		-	U		
Smart window	Substrate	T _{spec} @550nm	Response time	Power	Sale price on 2016 (brand)
Electrochromic	Class	5%-65%	300sec	0.1-0.5	\$1000/sq.m
(WO3 and NiO)	Glass		$(5x20 \text{ cm}^2)$	Whr/sq.m	(View glass)
Polymer dispersed	Polymer	6%-62%	500 ms	5-20 W/sq.m	\$396/sq.m (sonte)
liquid crystal	composite				\$100-300 (Alibaba)
Suspended Particle	ended Particle		100 200 mg	1.9-16	
Device	Glass	2.4%0- 39%0	100-200 ms	W/sq.m	-
This work	VIID 4005	1%-81%	<60sec	0.831	~\$65.6/sq.m
I IIIS WOFK	VПВ 4903			W/sq.m	

Comparison with Existing Technology

Conclusions

Transparent Tunable Acoustic Absorber

- Broader band absorption is obtained by microperforated DE absorber
- Peak-frequency is tuned by DEA (by 178Hz from 1170Hz)
- PEDOT:PSS/Triton-x100 is inkjet printed to make transparent compliant electrode

Acoustic absorber	Material and form	Back-cavity depth	Clarity	Bandwidth for (α>55%)	Maximum α at resonant frequency
Absorber Light	Polyster Fibre	150,000	Frosted	590Hz (from	68% at 629Hz
Curtains	weave	13011111		400 to 890Hz)	
Microperforated	Microperforated	25.0000	Clear	578Hz (from	94.8% at 780Hz
Glass	glass panel	2311111		500 to 1078Hz)	
This work	Microperforated	40mm	Clear	800Hz (from	97.4%@ 934Hz
I IIIS WOLK	VHB membrane			621 to 1421Hz)	

Comparison with Existing Technology

Recommendations for Future Work

- ≻Window appliances desire a lifetime of 20 to 25 years
 - Currently used elastomer is not weatherproof
 - It can creep and tear over time
 - Investigate new weatherproof dielectric elastomer materials
- ≻High voltage requirement can be concerned
 - Experiment on soft dielectric materials with high dielectric constant
- Current tunable MPDEA absorber is working in the low-to-medium frequency
 - R&D on mass-loaded membranes to target low-frequency
- ≻Large back-cavity depth of current absorber
 - R&D backed-cavities with meta-surface to reduce cavity depth

Acknowledgement

• Supervisor: A/P Liu Erjia

Asst. Prof Lau Gih Keong

- Project Co PI: Prof Anand Krishna Asundi
- Dr. Lu Zhenbo, Dr. Mohan Rosmin Elsa, Dr. Anansa Sasha Shakil Ahmed
- Mr. Pek Soo Siong, Mr. Cheo Hock Leong
- Singapore Centre for 3D Printing (SC3DP), NTU and Singapore Millennium Foundation (SMF)

Thank You

Questions are Welcome