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Background
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• Glasses are used in high rise buildings to:
1. Promote daylighting
2. Isolate from outdoor noise
3. Architectural aesthetics 

Introduction



Types for Glass: Optical Aspects
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House Indoor
Flat glass

Flat Glass

• Allows direct 
daylight 

• Clear visibility
• Privacy Issues
• Direct sunlight 

Glare

House Indoor
Frosted glass

Frosted Glass

• Diffuse light
• Obscure visibility

Introduction
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But they are fixed once manufactured.
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Glasses for Sound Absorption
Normal glass  
causes echo

Micro-perforated 
glass absorbs sound Reduces echo

Various designs of commercial micro-perforated glass exist

Introduction
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Curtains for Sound Absorption & Daylighting
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• Curtains block light and absorb sound
• Adjusting is a hassle
• Recently few are designed to be translucent
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https://www.gerriets.com/media/wysiwyg/downloads/certificate/acoustics-certificate/DE-versions/gc-DE-ABSORBER-LIGHT-
Schallgutachten-DIN-EN-ISO-354.pdf
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Current Need: Multifunctional Smart Window
• Need a Smart Window which can

• Control transparency and
• Absorb sound simultaneously
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• Few window devices which 
can perform one of the 
functions are commercially 
available 

• Transparency Tuning Unit 

• Noise Absorbing Unit 

Existing Solution
1. Electrochromic glass
2. Polymer dispersed liquid 

crystal device (PDLC)

Existing Solution
1. Panel type absorber
2. Micro-perforated panel 

absorber (MPP)Indoor Noise
Reduced reflected 

sound

Sun Light

Controlled 
Daylight

Introduction
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• Micro-blinds array
• Optofludic smart glass

Examples

• Polymer dispered liquid crystals 
(PDLC)

• Polymer filled with phase 
changing particle

• Indentation of elastomer substrate
• Thin-film Wrinkling

• Electrochromic glasses
• Suspended Particle Devices

Review: Transparency Tunable Glasses
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Literature Review



Existing Smart Windows
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 Electrochemically changes color
 Tunes transmittance from 5% to 65%
 Cost $1000/sq.m (viewglass)
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Literature Review

Electrochromic Glass
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 Scatters light to appear opaque
 Tunes transmittance from 6% to 62%
 Cost ($200-300/sq.m)
 Age upon prolonged UV exposure

Polymer Dispersed Liquid Crystal Device (PDLC) 
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Low-cost Approach: Surface Roughening
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Dielectric elastomer

Nanowire electrode
(a) Light passing without 

diffusion
(b) Diffuse refraction upon 

electrical activation

Indentation of Elastomer

(b) Diffuse refraction upon 
wrinkle formation

(a) Light passing without 
diffusion

Dielectric elastomer

Thin film stiff electrode

Surface wrinkling 

Literature Review



Tunable Privacy Glass
Polymer dispersed Liquid Crystal Indentation of elastomer substrate Thin-film Wrinkling

Comparison: Existing Devices
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 Nanowires in indentation device scatters light and limits transmittance
 Thin-film wrinkling has larger visibility tuning range

Literature Review
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Performance Comparison of Thin Films
Thin films Indium Tin Oxide Gold Graphene Oxide Silicate (treated)
Electrical 
Property Conductor Insulator

Tuning
visibility

In-plane 
strain 37% 70% 400% 30%
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 High transparency at unwrinkled state is required
 Large in-plane compression is not applicable for window appliance

Comparison: Thin Films Wrinkling Based Device

• Large in-plane compression 
makes these devices 
inapplicable as window 
appliance

Literature Review
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Review: Acoustic Absorbers
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Existing Transparent Acoustic Absorbers

• Resonating membrane or panel 
absorbs sound

• Designed for fixed low frequency 
sound of narrow bandwidth

14

1. Panel absorber
Back air cavityHeat from viscous 

friction of air

DtResonating 
acoustic mass

R
ig

id
 g

la
ss

2. Micro-perforated panel absorber (MPP)

Cross-sectional side viewIsometric viewCross-sectional side viewIsometric view

• Helmholtz resonator principle
• Resonance of air-plug in the perforations 

also absorbs sound
• Designed for fixed low frequency sound
• Designed frequency depends on 

perforation size and Membrane thickness
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 Panel absorber has narrow 
absorption bandwidth 

 MPP has relatively broader 
absorption bandwidth 

0
0.2
0.4
0.6
0.8

1

0 1000 2000 3000 4000 5000

N
oi

se
 In

te
ns

ity
 

Frequency (Hz)

15

[1] D. Herrin and J. Liu, "Properties and Applications of Microperforated Panels," Sound and Vibrations, 2011.
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Part II: Acoustic Absorption
Existing transparent acoustic absorbers have fixed absorption bandwidth
They are inefficient for noise other than designed frequency 




Motivation and Objectives
Problem Statement: Transparency Tuning

• Existing commercial technologies for transparency tuning are expensive

• Most of them have moderate transparency tuning range (e.g. 65% to 5% electrochromics)

• High continuous power consumption (e.g. 5-20 W/sq.m PDLC)

• Low cost approach using large area strain to form micro-wrinkles (e.g. >400% area change Graphene
oxide)

• Low coverage to the windows due to large area strain
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Problem Statement: Acoustic Absorption
• Porous absorbers are opaque
• Existing transparent acoustic absorbers have fixed narrow absorption bandwidth (e.g. panel absorber)
• They are inefficient to absorb noise with varying dominant frequency

Objectives:

1. To develop a low-cost smart window based on surface wrinkling
• With large transparency tuning range and
• Requires small area strain

2. To develop tunable acoustic absorbers which can adapt to broader bandwidth noise of varying 
dominant frequency



Part I
Smart Window for tunable transparency

Based on Surface-Wrinkling

17

Method & Results



Scattering of Light by Rough Surface
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Inline transmittance (𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 𝑇𝑇.𝑒𝑒𝑒𝑒 𝑝𝑝 −
2𝜋𝜋𝜎𝜎
𝜆𝜆 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖 𝑛𝑛1 − 𝑛𝑛2

2

where, 𝑇𝑇 = 1 −𝑅𝑅 = 4𝑛𝑛1𝑛𝑛2
𝑛𝑛2+𝑛𝑛1 2 is the total transmittance of the medium given by Fresnel equation, 𝑛𝑛1 and 𝑛𝑛2 are 

the refractive indices of two optical media which defines the interface,
θi is angle of incidence, 𝜎𝜎 is the surface roughness and λ is the wavelength of light

**A. Spizzichino, The Scattering ofElectromagneticWaves fromRough Surfaces. By P. Beckmann... andAndré Spizzichino:PergamonPress, 1963.
*P. Beckmann and A. Spizzichino, "The scattering of electromagnetic waves from rough surfaces," Norwood, MA, Artech House, Inc., 1987, 511 p., 1987.

 Optical scattering is strongly dependent on surface roughness (𝜎𝜎) and refractive index 
mismatch

Method & Results

Presenter
Presentation Notes
Difference in incident height induces phase difference, leads to interference and bending the light rays.



Electrically Unfolding Microwrinkles
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(b) Diffuse refraction upon 
wrinkle formation

(a) Light passing without 
diffusion

(c) Reduction in light diffusion by 
electrical activation

Dielectric elastomer Thin film stiff electrode

 Electrically controlling wrinkle amplitude using Dielectric Elastomer Actuators

Voltage induced strain, 𝑒𝑒 𝑉𝑉 = 𝐷𝐷 𝑉𝑉
𝐷𝐷𝐼𝐼

− 1 = 𝑒𝑒0 + 𝛥𝛥𝐷𝐷 𝑉𝑉
𝐷𝐷𝐼𝐼𝐼𝐼

𝐷𝐷𝐼𝐼𝐼𝐼
𝐷𝐷𝐼𝐼

= 𝑒𝑒0 + 𝛥𝛥𝐷𝐷 𝑉𝑉
𝐷𝐷𝐼𝐼𝐼𝐼

1 + 𝑒𝑒0

≈ 𝑒𝑒0 + 1 + 𝑒𝑒0
𝜀𝜀𝑟𝑟𝜀𝜀0
4𝐸𝐸𝑠𝑠

𝑉𝑉
𝑡𝑡𝐼𝐼𝐼𝐼

2
.

Soft elastomer
Voltage Off

(a) (b)
Compliant electrode

Voltage On

Maxwell stress

V

𝐷𝐷𝐼𝐼 𝐷𝐷𝐼𝐼𝐼𝐼 D(V)

where,
pre-compression
strain 𝑒𝑒0 = 𝐷𝐷𝐼𝐼𝐼𝐼

𝐷𝐷𝐼𝐼
− 1.

Method & Results

Presenter
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For 10micron wrinkle at 14% compression, refraction angle ~ 20 degrees and diffraction order of approximately, 3.72 degrees are calculated



A
1

Thinne/softer  
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Coating

L01
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Slightly Scattered (low TIS1) Highly Scattered (high TIS2)

λ2λ1

t1 < t2
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A
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Lf1 = Lf2

L01 = L02

Solution : Thin Film Material Selection
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 Problem Summary: Need for effective optical diffusion by surface microwrinkling 
under a small axial compression

 Material selection criteria to solve the problems
 Highly transparent
 Electrically conductive
 Stiff (So that even nanometric coating can induce large microwrinkles at small strain)
 High Refractive index (larger refractive index mismatch is better for scattering)

• ITO and AZO are possible but forms thermally induced wrinkles
 Solution: Multilayer thin films of materials like ZnO or TiO2 films and conductive 

materials like PEDOT:PSS (poly (3, 4-ethylene dioxythiophene)-poly styrene sulfonate) 
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Experimental Work: PEDOT:PSS/TiO2 Coating

• Titanium dioxide (TiO2) thin films deposited at room temperature (38.79nm thick using E-beam 
evaporation deposition, Coaxial Power Systems) on 3 times pre-stretched VHB4905 membranes

• PEDOT:PSS is spin-coated (38.79nm thick) or inkjet printed on TiO2 thin films 

21

VHB

DI

ii) Biaxial compression

DII

i) Thin film deposition 
Fabrication procedures

Method & Results

• Inline transmittance measurement: Spectrometer (AvaSpec-USB2 Fiber Optic), Halogen light 
source (AvaLight-Hal-S-Mini)

• Electrically activated : by high voltage power supply; current and voltage are logged; cyclic 
activation controlled by function generator

Light 
Source

Collimating lens 
(ϕ6 mm) Spectrometer

70 mm
Optical Fiber

Transparency tuning device

Pulse 
trigger

High Voltage 
Supply 

(kilovolts)

Function 
Generator

Digital 
Multimeter

NI Data logger
(V and I 
logging)

0 V

5 V + -

Measurement Setup

Presenter
Presentation Notes
Processing parameters (TiO2)
Vacuum Pressure: 3.2 x 10-5 torr
Current: 30 m. amp
Voltage: 4.89 kV 
Deposition rate: 0.2 nm/min
Substrate: Pre-stretched 3M VHB 4910




Results: Wrinkling of TiO2/PEDOT:PSS Thin Films
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• The wrinkled surface scatterers the light (full width at half-maximum angle = 44.77°)

• Tunes transparency from 1.8% transmittance to 81% upon activation (involves only 4% 
compression strain).

Results: Tuning transparency by DEA activation
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 The transparency tuning is broadband (i.e. throughout 
visible range)

 Consumes very low power 0.81W/m2 (2.85kV and <1µA)
 Reliable for repeated and long hour activations
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Part II
Tunable Micro-Perforated Membrane Absorbers

25

Method & Results

 Problem Summary: Fixed absorption spectrum of Narrow Bandwidth
 Proposed Solution: DEA-based tunable microperforated membrane absorbers

(tunable broaderabsorption spectrum)



• MPP’s absorption frequency depends on perforation size and membrane tension
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Proposed Solution: Tunable MPDEA Absorber

** Lu, Z., Shrestha, M. & Lau, G.-K. Electrically tunable and broader-band sound absorption by using micro-perforated dielectric elastomer 
actuator. Applied Physics Letters 110, 182901, doi:10.1063/1.4982634 (2017).

∆𝑎𝑎(𝑉𝑉) =
𝜈𝜈

1 − 𝜈𝜈
𝑃𝑃𝑠𝑠
𝐸𝐸

𝑏𝑏 +
𝑎𝑎2

𝑏𝑏
− 2𝑎𝑎− 𝜈𝜈 𝑏𝑏 −

𝑎𝑎2

𝑏𝑏

𝛥𝛥𝜎𝜎1∞ = − 𝜈𝜈𝑃𝑃𝑒𝑒
1−𝜈𝜈

.
Voltage induced stress change

where, 𝑃𝑃𝑠𝑠 =
𝜖𝜖𝑟𝑟𝜖𝜖𝑜𝑜

𝑉𝑉
𝑡𝑡

2

2
electrostatic

pressure, 𝜈𝜈 is the elastomer’s Poisson's
ratio, V is the applied voltage and t is
the membrane thickness, 𝜖𝜖𝑜𝑜 is the
vacuum permittivity, 𝜖𝜖𝑟𝑟 is the dielectric
constant.

Voltage induced reduction
in hole radius

𝑓𝑓 =
𝑐𝑐

2π
𝜋𝜋𝑎𝑎2

2𝑏𝑏 2.𝐻𝐻. (2ℎ)

Resonant Frequency assuming 
Helmholtz Resonator

where, c is velocity of sound

• Absorption spectrum of an microperforated membrane 
absorber is modeled by Maa et. al. and Y. Li et. al. *

*Li, Y., & Assouar, B. M. (2016). Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Applied Physics Letters, 108(6), 063502.
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Experiment
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Mic2

DEMP membraneLoudspeaker

Mic1

Trek 10/40A 
NI PCI-6251

Conditioner

Back Cavity

Amplifier

Incident wave

Reflected wave

• Impedance Tube (770mm long) Setup used to 
characterize absorption property of cavity 
backed resonant absorber

• Two microphone method used
• Microphone switch method used for phase and 

amplitude correction

Method & Results

(1) Pre-stretching of VHB

(2) Inkjet Printing of 
PEDOT:PSS thin film

(5) Laser drilling of through hole 

(3)  Repeat step (2) on other side

(4) Heating in an oven (~50°C)

Fabrication steps



Transparent Tunable MPDEA Absorbers
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(c) Optical transparency of the absorbers
(d) Shifting absorption spectrum by DEA activation

(b) Perforation diameter reduction by DEA 
voltage activation
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 2-layered MPDEA were ~70% transparent

 Hole diameter reduced by >15% at 5.5kV

Absorption Bandwidth at α=0.8 is 444Hz from 
846Hz-1290Hz
 Resonant Frequency is shifted from 1170Hz to 
992Hz upon activation
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Conclusions
Transparency Tuning Using DEA

High performance, low cost transparency tuning device 
based on surface wrinkling with TiO2/PEDOT:PSS 
transparent coating layer

 Electrically transparency is tuned from 81% to 1% with 
less than 5% in-plane radial compression is obtained 
using DEA
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V=0kV V=2.85kV

Smart window Substrate
Tspec

@550nm
Response 

time Power
Sale price on 2016 

(brand)
Electrochromic 
(WO3 and NiO) Glass 5%-65%

300sec
(5x20 cm2)

0.1-0.5 
Whr/sq.m

$1000/sq.m
(View glass)

Polymer dispersed 
liquid crystal

Polymer 
composite 6%-62% 500 ms 5-20 W/sq.m

$396/sq.m (sonte)
$100-300 (Alibaba)

Suspended Particle 
Device Glass 2.4%- 59% 100-200 ms

1.9-16 
W/sq.m -

This work VHB 4905 1%-81% <60sec
0.831 

W/sq.m ~$65.6/sq.m

Comparison with Existing Technology



Conclusions

Transparent Tunable Acoustic Absorber
Broader band absorption is obtained by micro-

perforated DE absorber
Peak-frequency is tuned by DEA (by 178Hz 

from 1170Hz)
PEDOT:PSS/Triton-x100 is inkjet printed to 

make transparent compliant electrode
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Acoustic absorber
Material and 

form
Back-cavity 

depth Clarity
Bandwidth for 

(α>55%)
Maximum α at 

resonant frequency
Absorber Light 

Curtains
Polyster Fibre 

weave 150mm Frosted
590Hz (from 

400 to 890Hz) 68% at 629Hz

Microperforated 
Glass

Microperforated 
glass panel 25mm Clear

578Hz (from 
500 to 1078Hz) 94.8% at 780Hz

This work
Microperforated 
VHB membrane 40mm Clear

800Hz (from 
621 to 1421Hz) 97.4%@ 934Hz

Comparison with Existing Technology



Recommendations for Future Work
Window appliances desire a lifetime of 20 to 25 years

• Currently used elastomer is not weatherproof
• It can creep and tear over time
• Investigate new weatherproof dielectric elastomer materials

High voltage requirement can be concerned
• Experiment on soft dielectric materials with high dielectric 

constant
Current tunable MPDEA absorber is working in the 

low-to-medium frequency
• R&D on mass-loaded membranes to target low-frequency

Large back-cavity depth of current absorber
• R&D backed-cavities with meta-surface to reduce cavity 

depth
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Thank You

Questions are Welcome
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