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Abstract: The objective of this study is to analyze the capabilities of multi-temporal TerraSAR-X 11 
images to estimate the fine-scale SSM variability over bare agricultural plots (at a spatial scale 12 
ranging from 80 to 2800 m²). Time series of X-band satellite images were collected over a study site 13 
located in southwestern France, together with intra-field measurements of key soil descriptors (i.e., 14 
SSM, surface roughness, soil texture). The large dataset allows independent training and validating 15 
steps of a statistical algorithm (random forest), SSM being estimated using images acquired at low 16 
at high incidence angles. The level of performances obtained at the plot spatial scale, with R² 17 
ranging from 0.64 to 0.67 (depending on the considered incidence angle) and a RMSE close to 5.0 18 
m-3.m-3, are exceeded by those obtained at a finer scale (700 m², corresponding to buffers with a 15 19 
m radius). At this intra-plot spatial scale, the estimates based on the low incidence angles images 20 
are associated to a R² of 0.69 and a RMSE of 4.89 m-3.m-3, results slightly lower than performance 21 
obtained using high incidence angles images, R² of 0.72 and a RMSE of 4.55 m-3.m-3. Such 22 
magnitude of performance slightly increases over larger intra-plot spatial scales, the values of R² 23 
being superior to 0.75 with RMSE lower than 4.20 m-3.m-3 over areas of 2800 m² (corresponding to 24 
buffers with a 30 m radius). 25 

Keywords: Surface soil moisture; bare soils; TerraSAR-X; random forest; plot spatial scale; 26 
intra-plot spatial scale. 27 

 28 

1. Introduction 29 

Numerous studies have demonstrated the usefulness of SAR satellite images for monitoring 30 
subsurface parameters, particularly in an agricultural context during periods without vegetation, 31 
where these signals offer the possibility of estimating variables related to the soil (e.g., surface soil 32 
moisture, surface roughness, soil texture) [1-3]. The sensitivity of microwave signals to variations in 33 
surface soil moisture (SSM) has thus been demonstrated in various studies, and often quantified 34 
through empirical relationships [1,4-5]. In these studies, the dynamics of the signals are 35 
characterized, but the relationships remain nevertheless limited because they are established under 36 
specific conditions (on a limited number of plots or even on a single plot, for specific surface 37 
roughness levels, and/or on the basis of images acquired in specific configurations) limiting the 38 
possibilities of extrapolation over large areas. 39 

To overcome these limitations of application in various contexts, other approaches have been 40 
proposed. For example, they are based on the following combination: electromagnetic signal 41 
modeling, in order to simulate the diversity of possible cases that can be observed in agricultural 42 
conditions, and a statistical inversion method, which is trained on the basis of synthetic data from 43 
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the modeling [6-7]. The target variable is finally estimated by applying the statistical algorithm to the 44 
satellite images. In this approach, the signal modeling step is a central and critical element that will 45 
determine the final accuracy of the surface moisture estimates. Different backscattering models can 46 
then be used to reproduce SAR signals in bare soil period ([8-10]), while the vegetation component is 47 
estimated through the Water Cloud Model [11]. However the soil model’s performance are limited, 48 
even after modifications by calibration or taking into account the observed biases [12]. An alternative 49 
relies on the use of a statistical approach, offering higher performance regarding the estimation 50 
backscatter coefficients [13], provided that there are sufficient ground measurements during satellite 51 
acquisitions (so that calibration and validation steps can be carried out independently). 52 

Whatever the considered approach, the estimates are derived at spatial scales ranging from the 53 
regional (i.e., pixel of several km²) to the plot scale (i.e., area of interest of several hectares), while the 54 
possibilities of mapping at intra-plot spatial scale are rarely addressed [1,4-7]. However, this spatial 55 
scale is a determining factor in the modulation of agricultural practices, particularly in a context of 56 
precision farming. It is therefore necessary to estimate the potential of SAR data for monitoring 57 
sub-surface parameters, at spatial scales close to the pixel. Especially in a context where access to 58 
SAR images at metric or decametric spatial resolutions is made possible by several satellite missions 59 
(e.g., Sentinel-1, Radarsat constellation, Terrasar-X, Tandem-X). 60 

The objective of this study is to address the potential of TerraSAR-X data to estimate the surface 61 
soil moisture at the intra-plot spatial scale. The mean features of the quasi-synchronously collected 62 
ground data and SAR satellite images are described in section 2. The proposed approach is based on 63 
a statistical algorithm (i.e., random forest), trained and validated by considering variable areas of 64 
interest (i.e., plot and intra-plot spatial scales). The results are analyzed and discussed (section 3), 65 
focusing on the overall statistical performances obtained for images acquired at low and high 66 
incidence angles. 67 

2. Experiments  68 

2.1. Study site 69 

The network of plots where was conducted the experiment was located in southwestern France 70 
(Figure 1). From February to November 2010, in situ measurements of key sub-surface descriptors 71 
were regularly collected, synchronously to satellite images (MCM'10 campaign, see [14] for more 72 
details). The main characteristics of the study area were: (i) a temperate climate, with an amplitude 73 
of mean months temperature near 20°C (observed between winter and summer), and annual 74 
cumulative rainfall exceeding 600 mm; (ii) a highly anthropized area, surfaces being mainly 75 
allocated to seasonal crops cultivated on more than half of the landscape, (iii) a very fragmented 76 
landscape, with plots showing different shapes and sizes (with areas comprised between 1 and 95 77 
hectares). In the present study, the focus is on bare soil conditions which were observed after the 78 
harvest and before the sowing of the next crop (i.e., in spring and autumn). 79 
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 80 

Figure 1. Location of the study site (super site) in southwestern France. The network of the surveyed 81 
fields (brown polygons) superimposed on a color-composed TerraSAR-X image acquired in 82 
StripMap mode at HH polarization (Red: 2010/05/20, Green: 2010/08/16, Blue: 2010/11/23). Soil 83 
moisture and texture measurements are represented by blue and black circles respectively. 84 

2.2. Materials 85 

2.2.1. In situ data 86 

The three key variables having a marked influence on the dynamics of the SAR signals in bare 87 
soil periods, and allowing to characterize the surface horizon were collected on each monitored plot. 88 
The surface roughness was measured after each tillage event, using a 2 meters-long needle 89 
profilmeter (composed of 201 needles spaced one centimeter). Two quantitative variables were 90 
derived from the couples of profiles recorded parallel and perpendicular to the direction of the 91 
tillage of the plot. The values of root mean square height (hrms) and the correlation length (lc) 92 
showed large variation intervals (varying from 0.5 to 6.9 cm, and 1.1 to 16.5 cm, respectively), 93 
consistent with the observed surface conditions (with smooth to very rough surfaces). Surface soil 94 
moisture (i.e., top soil layer of 0-5 cm) and texture geo-located measurements were performed along 95 
the same transects for each field. The fractions of clay, silt, and sand were derived from 2 to 8 points 96 
performed on each plot, consisting in 16 core samples within a circle of 15 m of diameter and a depth 97 
of 25 cm. A total of 146 points were collected, showing the dominance of the silt fraction within the 98 
study area (52% of silt and 24% of clay and sand, for average values) and an important variation of 99 
texture conditions with fractions between 22 and 77% for the silt, between 9 and 58% for the clay, 100 
and between 4 and 53% for the sand. The monitoring of SSM was performed using portable probes 101 
(ML2x from ThetaProbe), delivering a signal in mV which was converted in volumetric moisture 102 
(using the calibration relationship established by [14]). The regular measurements of SSM were 103 
collected quasi-synchronously with satellite acquisitions (time lag between in situ measurements 104 
and satellite acquisitions of less than one day for the majority of cases), allowing to characterize soil 105 
in a wide range of moisture conditions (from dry to saturated), characterized by values of SSM 106 
ranging from 3.2 to 34.9%. 107 

2.2.2. TerraSAR-X satellite data 108 
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The German satellite TerraSAR-X operating in the X-band (f = 9.65 GHz, λ = 3.1 cm) provided 109 
the 21 microwave images (Table 1). They were acquired at low (27.3°) or high (53.3°) incidence 110 
angles (11 and 10 images respectively) in HH polarization. Two beam modes (SpotLight and 111 
StripMap) characterized by a pixel spacing ranging from 1.5 to 2.75 m [15] were used. All images 112 
were calibrated, the backscattering coefficients were finally average at the plot scale and considering 113 
six buffers with a radius ranging from 5 to 30 m (corresponding to areas from ~80 to ~2800 m²). 114 

Table 1. Mean features of the TerraSAR-X images acquired with SpotLight (SL) and StripMap (SM) 115 
modes. 116 

Mode Acquisition Date 
Orbit 

Pass 

Incidence  Pixel 

Angle size 

(°) (m) 

Spotlight 
03/05/10 ; 05/21/10 ; 07/15/10 ; 08/17/10 ; 09/30/10 

D 53.3 1.5 
10/11/10 ; 10/22/10 ; 11/02/10 ; 11/13/10 ; 11/24/10 

StripMap 
02/21/10 ; 03/26/10 ; 05/09/10 ; 05/20/10 ; 07/14/10 

D 27.3 2.75 
08/16/10 ; 09/29/10 ; 10/10/10 ; 10/21/10 ; 11/12/10 ; 11/23/10 

2.3. Method 117 

The statistical algorithm proposed by [16] was used to estimate SSM, by considering the 118 
following inputs as explanatory variables: the backscattering coefficients and the incidence angles of 119 
the SAR images, the fractions of clay and sand, and the soil root mean square height (hrms) and 120 
correlation length (lc) collected in the parallel and perpendicular directions. Random forest has been 121 
widely used in different fields, being particularly appropriate in multi-factorial context to model 122 
non-linear relationships. The targeted variable is derived from a weighted mean of an ensemble of 123 
estimations, obtained from independent decision trees trained on different set of samples. Such a 124 
procedure limits the problems of over-adjustment or the noise influence on data, and provides a 125 
high stability of results. 126 

In the present study, independent cases were considered accordingly to the considered spatial 127 
scale, that was plot or intra-plot. Six buffer area were taken into account by considering the 128 
geo-location of texture measurements as reference and radius ranging from 5 to 30 m (corresponding 129 
to areas from ~80 to ~2800 m²). These areas of interest were used to extract the SAR satellite signals 130 
and to select the corresponding SSM measurements. 131 

Whatever the considered spatial scale, the dataset was randomly partitioned into two subsets. 132 
The statistical algorithm was calibrated on the training set and validated on the independent test set. 133 
This procedure was repeated ten times. Finally, the average values of the coefficient of 134 
determination (R²) and the root mean square error (RMSE) were derived from the comparison 135 
between the observed and estimated values of the SSM. 136 

3. Results and discussions 137 

3.1. Overall performances obtained at the plot spatial scale 138 

The estimated values of SSM are compared to in situ measurements showing the independent 139 
subsets of samples used during the training and validation steps (in grey and black, respectively) 140 
(Figure 2). The levels of performances are close regardless the considered incidence angle, with 141 
RMSE of 5.12 and 4.96 % m3.m-3, and R² of 0.64 and 0.66 (values obtained for the validation subset of 142 
samples). A quasi-similar magnitude of values is observed during the training step, pointing out the 143 
high stability of results when using RF algorithm. The level of accuracy and in particular the 144 
correlation values may appear to be limited, however these results are consistent with a number of 145 
past studies performed over bare soils, using X-band SAR signal and empirical or semi-empirical 146 
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models [1,4-5,7]. Although these approaches are different from the one implemented here, the 147 
performance levels are equivalent to those obtained with the statistical approach, the best results 148 
showing SSM estimates with an R² ranging from 0.64 to 0.79 and an RMSE when presented varying 149 
between 2.81 and 4.09 m3.m-3. Moreover, in our case the approach is applied over a wider soil 150 
roughness domain (hrms of 3.9 cm in the previous case compared to 6.9 cm in the present case), and 151 
independently to images acquired at two contrasting incidence angles (i.e., at 27.3 and 53.3°), 152 
without observing any noticeable difference on the level of performance. The absence of angular 153 
effect constitutes an advantage of the proposed method, offering interesting prospects for estimating 154 
SSM using satellite images with various configurations. 155 

 
(a) 

 
(b) 

Figure 2. Comparison between in situ measurements of surface soil moisture and estimates derived 156 
from TerraSAR-X images acquired at 27.3° (a) or 53.3° (b). The grey and black dots represent the 157 
estimations performed considering the training or validation subsets of samples, respectively. 158 

3.2. Evolution of the statistical performance at the intra-plot spatial scale 159 

The Figure 3 presents the statistical performances (R² and RMSE) obtained by comparing the 160 
values of SSM estimated using the statistical approach to ground measurements for circular buffers 161 
ranging from 5 to 30 m, together with results obtained at the plot scale. The performance increase in 162 
correlation from 0.46 to 0.78, while the error decreases from 6.45 to 3.97% m3.m-3, when considering 163 
the 5 and 30m buffers.This gain in performance has a non linear behavior and becomes weak when 164 
the radius of the buffer reaches 20m. This phenomenon is mainly explained by the specificities of the 165 
SAR signal, and in particular by the radiometric resolution. In a previous study, [17] characterize the 166 
radiometric resolution for the two TerraSAR-X beam modes used in the present study. For the 167 
considered intra-plot spatial scales, the values of radiometric resolution shift from 0.71 to 0.13 dB 168 
and from 1.14 to 0.21 dB, for the SL and SM beam modes respectively. The non-linear performance 169 
gain observed with the increase in buffer size appears to be consistent with the exponential decrease 170 
in radiometric resolution values. Statistical performance is thus very close for buffers greater than 171 
20m radius (radiometric resolution values being almost similar). Moreover, weaker performences 172 
obtained at plot scale highlight the fact that SSM measurements performed ponctually do not 173 
represent significantly the surface state at the plot scale. 174 
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(a) 

 
(b) 

Figure 3. Evolution of the statistical performances (coefficients of determination and root mean 175 
square errors, bars and dots respectively) with the buffer's size and at the plot spatial scale (PS), for 176 
the training (grey) or validation (black) subsets of samples, for SSM estimates derived from TS-X 177 
images acquired at low (27.3°) and high (53.3°) incidence angles (a and b, respectively). 178 

Figure 4 presents a comparison between the estimated and in situ measurements of SSM values 179 
for the buffer of 30 m. At this spatial scale, a high level of performance is observed on both training 180 
and validation steps, and whatever the considered incidence angle. The values of R² exceeds 0.75 181 
while the RMSE on SSM estimates is lower than 4.2% m3.m-3. SSM estimates, however, are associated 182 
with wide dispersion, although performance levels obtained at this spatial scale exceed previous 183 
results obtained at the spatial scale of the plot [1,4-5,7]. 184 

 
(a) 

 
(b) 

Figure 4. Comparison between estimated and observed SSM for a buffer with a radius of 30 m, for 185 
TS-X images acquired at low (27.3°) and high (53.3°) incidence angles (a and b, respectively). The 186 
grey or black colors represent the estimations performed considering the training or validation 187 
subsets of samples, respectively. 188 

5. Conclusions 189 

The present study takes advantage of a dense network of georeferenced in situ measurements 190 
collected synchronously with the regular acquisition of X-band SAR images, to address the potential 191 
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of high spatial resolution TerraSAR-X data for surface soil moisture estimation at the intra-plot scale. 192 
Results based on a statistical algorithm are obtained from images with low and high incidence 193 
angles (i.e., 27.3 and 53.3°), showing performance levels consistent with the literature at plot scale 194 
and particularly promising results at the intra-plot scale (R² superior to 0.75 and RMSE lower than 195 
4.20 m-3.m-3 over areas of 2800 m² regardless the incidence angle). 196 

The actual or planed satellite missions offer a wide range of possibilities that should be tested 197 
with the method presented here, by considering images acquired at different frequencies, at 198 
contrasting angles of incidence, or with different polarization states. The only constraint lies in the 199 
availability of data, especially in situ, in order to be able to implement the statistical approach. 200 
Moreover, the characteristics of the satellite sensors, as well as the beam modes of image acquisition, 201 
condition the SAR signal that needs to be tested to determine the possibilities for intra-plot scale 202 
studies offered by other satellite missions. 203 
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