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Abstract: This paper aims at addressing the potential of polarimetric indices derived from C-band 11 
Radarsat-2 images to estimate the surface soil moisture (SSM) over bare agricultural soils. Images 12 
have been acquired during the Multispectral Crop Monitoring (MCM) experiment throughout an 13 
agricultural season over a study site located in southwestern France. Synchronously with the 14 
acquisitions of the 22 SAR images, field measurements of soil descriptors were collected on surface 15 
states with contrasting conditions, with SSM levels ranging from 2.4 to 35.3% m3·m−3, surface 16 
roughness characterized by standard deviation of roughness heights ranging from 0.5 to 7.9 cm, 17 
and soil texture showing fractions of clay, silt and sand between 9-58%, 22-77%, and 4-53%, 18 
respectively. The dataset was used to independently train and validate a statistical algorithm 19 
(random forest), SSM being estimated using the polarimetric indices and backscatter coefficients 20 
derived from the SAR images. Among the SAR signals tested, the performance levels are very 21 
uneven, as evidenced by magnitude of correlation (R²) ranging from 0.35 to 0.67. The following 22 
polarimetric indices present the best estimates of SSM: the first, second and third elements of the 23 
diagonal (T11, T22 and T33), eigenvalues (λ1, λ2, λ3 from Cloude–Pottier decomposition), Shannon 24 
entropy, Freeman double-bounce and volume scattering mechanisms, the total scattered power 25 
(SPAN), and the backscattering coefficients whatever the polarization state, with correlations 26 
greater than 0.6 and with RMSE ranged between 4.8 and 5.3% m3·m−3. These performances remain 27 
limited although they are among the best SSM estimates using C-band images, comparable to those 28 
obtained with other approaches (i.e., empirical, physical based, or model inversion). 29 

Keywords: Surface soil moisture; bare soils; synthetic aperture radar; Radarsat-2; polarimetry; 30 
random forest. 31 

 32 

1. Introduction 33 

Numerous studies based on synthetic aperture radar (SAR) imagery have demonstrated the 34 
usefulness of microwave remote sensing data for surface soil moisture (SSM) estimation. Among the 35 
parameters that can be derived from these images, backscatter coefficients have been the subject of 36 
most studies especially in C-band [1-3]. The continuity of satellite missions in this frequency since 37 
the 1990s (with ERS-1/2, Envisat, Radarsat-1/2 or Sentinel-1a/b) explains the numerous studies, 38 
compared to the work carried out with other antenna configurations. In the majority of cases, the 39 
images delivered by these missions were characterized by one or even two polarization states. With 40 
missions such as Radarsat-2 and in particular the acquisition beam modes giving access to the four 41 
polarization states, the study of other metrics derived from satellite images became possible. 42 
Nevertheless, the performance and limitations associated with polarimetric approaches remain to be 43 
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established, as only a few studies have been carried out on the contribution of these data to the 44 
estimation of SSM. 45 

During the bare soil period, the sensitivity of certain polarimetric indices (i.e., alpha angle, 46 
entropy, anisotropy) was analyzed as a function of SSM or surface roughness. Some of the tested 47 
indices showed a low dynamic range with respect to the measured variables, the radar signals being 48 
generally characterized by a wide dispersion [4-5]. This trend was confirmed by the work aimed at 49 
estimating SSM in arid context, the polarimetric indices showing limited levels of performance in 50 
retrieving the small variation intervals of measured SSM [6]. During vegetative periods, attempts to 51 
estimate SSM were also tested on the basis of L-band data [7-9], also showing limitations in the use 52 
of polarimetric indices. 53 

In this context, the objective of this study is to address and compare the performance of 54 
polarimetric SAR indices for SSM estimates using a statistical algorithm (i.e., random forets). The 55 
mean features of the study site are described together with the three key soil variables collected at 56 
each satellite overpass (sections 2.1 and 2.2 ). After images processing, independent statistical 57 
algorithm are trained and validated for each parameter derived from the Radarsat-2 images 58 
(procedure described in section 2.3). The performance associated with the co- and cross-polarized 59 
backscattering coefficients, as well as those for polarimetric indices are presented, compared and 60 
discussed in sections 3 and 4. 61 

2. Experiments  62 

2.1. Study site 63 

From February to November 2010, the Multispectral Crop Monitoring campaign (MCM'10 64 
campaign, see [10] for more details) was conducted on a network of agricultural plots located in 65 
southwestern France (Figure 1). Subject to a temperate climate, the surfaces were mainly allocated to 66 
seasonal crops (i.e., straw cereals, sunflower, corn, rapeseed, sorghum or soybean) being cultivated 67 
on more than half of the landscape. The bare soil conditions were observed after the harvest and 68 
before the sowing of the next crop (i.e., in spring and autumn). Several tillage events might occur on 69 
the same plot, resulting in contrasted roughness levels (ranging from smooth before the crop sowing 70 
to very rough after deep ploughing). 71 

 72 

Figure 1. Location of the study site in southwestern France. The network of the surveyed fields is 73 
highlighted in white and superimposed on a color-composed Radarsat-2 image acquired the 74 
04/15/2010 (polarizations VH, VV and HH are presented in red, green and blue, respectively). 75 
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2.2. Materials 76 

2.2.1. In situ data 77 

• Surface soil moisture 78 

The regular measurements of SSM were collected by using portable probes (ML2x from 79 
ThetaProbe), allowing to sample the top soil layer (0-5 cm) along geo-located transects. The probes 80 
delivered a signal in mV that was converted in volumetric moisture expressed in cubic meter of 81 
water per cubic meter of soil (m3.m-3), through the determination of a calibration relationship [10]. 82 
The measurements were performed quasi-synchronously with satellite acquisitions over a wide 83 
range of conditions. The average values observed on the monitored plots varied between a 84 
minimum of 3.8% m3·m−3 and a maximum of 29.8% m3·m−3, extremes observed observed during 85 
summer months (after the harvest of the winter crops) or during the rainy period in February and 86 
May. 87 

• Soil texture 88 

The fractions of clay, silt and sand were derived from core samples collected on the monitored 89 
plots (along the same transects used for the measurements of SSM). For each geo-located 90 
measurement, 16 core samples within a circle of 15 meters of diameter and a depth of 25 cm were 91 
performed. The monitored plots presented an interesting variability regarding soil texture, fractions 92 
being between 9-58% for the clay, between 22 and 77% for the silt and between 4 and 53% for the 93 
sand. 94 

• Surface roughness 95 

A two-meter long needle prolimeter was used to measure the micro-relief of the after each 96 
change of surface condition. Two profiles were collected parallel and perpendicular to the tillage 97 
direction of the plot, and associated to obtain 4-m-long profiles. The surface roughness was finally 98 
characterized through the derivation of two variables: the root mean square height (hrms) and 99 
correlation length (lc). The values of hrms and lc were derived from parallel and perpendicular profiles 100 
on ploughed, stubble disked, harrowed, prepared cloddy, prepared smooth soil. The highest values 101 
of hrms were observed on the ploughed plots in the perpendicular direction (reaching a maximum of 102 
7.9 cm), while the lowest values were observed on the prepared plots in the parallel direction (with a 103 
minimum of 0.5 cm). 104 

2.2.2. Radarsat-2 satellite data 105 

Throughout the agricultural season, 22 microwave satellite images were acquired by the 106 
Canadian satellite Radarsat-2, on plots presenting bare soil conditions (Table 1). The SAR images 107 
were acquired in the C-band (f = 5.405 GHz, λ = 5.5 cm) using the full quad-polarization mode 108 
(FineQuad-Pol), which delivers products with HH, VV, HV, and VH polarizations [11]. They were 109 
acquired with eight different incidence angles, ranging from 24° to 41°, with pixel spacing of ~5 m. 110 

Table 1. Mean features of the Radarsat-2 acquisitions. 111 

Mode Acquisition Date (MM/DD) Pass 

Incidence  Pixel 

Angle size 

(°) (m) 

FQ5 03/05 ; 11/24 A 23.3 - 25.3 4.7x4.9 

FQ6 10/21 ; 11/14 D 24.6 - 26.5 4.7x4.7 

FQ10 02/26 ; 04/15 ; 05/09 ; 09/30 A 29.1 - 30.9 4.7x5.1 

FQ11 03/26 ; 08/17 D 30.2 - 32.0 4.7x5.5 

FQ15 03/15 ; 04/08 ; 05/02 ; 08/30 ; 10/17 A 34.3 - 36.0 4.7x4.8 

FQ16 05/20 ; 07/31 ; 10/11 D 35.4 - 37.0 4.7x5.1 
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FQ20 11/03 A 39.1 - 40.7 4.7x4.8 

FQ21 02/20 ; 03/16 ; 07/14 D 40.1 - 41.6 4.7x5.1 

2.3. Method 112 

2.3.1. Images processing 113 

A radiometric calibration was first applied to the SAR images, they were then geo-coded (to 114 
correct the topographic deformations) and projected, procedures allowing the extraction of the 115 
backscattering coefficients at the plot spatial scale. 116 

The processing steps aiming at deriving the polarimetric indices were performed on the SLC 117 
Radarsat-2 images, using the PolSARpro v5.0 software (Polarimetric SAR Data Processing and 118 
Educational Toolbox) [12]. Finally, the following 17 polarimetric indicators were analyzed here: 119 
entropy, anisotropy, alpha angle, and eigenvalues (λ1, λ2, λ3) (Cloude–Pottier decomposition), 120 
double-bounce, volume, and surface scattering (Freeman–Durden decomposition), SE, SEi, SEp, 121 
SPAN, RVI, and T11, T22, and T33. 122 

2.3.2. From satellite signals to SSM estimates 123 

The parameters derived from the Radarsat-2 images (i.e., backscattering coefficients or 124 
polarimetric indices) were used independently to estimate the SSM, constituting one of the 125 
explanatory variables of the statistical algorithm proposed by [13]. In addition to the radar signals, 126 
the following variables were also considered as inputs: the incidence angles of the SAR images, the 127 
fractions of clay and sand, and the root mean square height (hrms) and correlation length (lc) 128 
(measured in the parallel and perpendicular directions). The random forest shows satisfactory 129 
results, especially for modelling non-linear relationships. Such dynamics are a characteristic of the 130 
sensitivity of SAR signals to surface parameters observed in different studies [14-15]. In a context of 131 
estimation of backscatter coefficients, the statistical algorithm offers for example better performances 132 
than electromagnetic modelling [16-17]. The targeted variable (i.e., SSM in the present case) was 133 
derived from a weighted mean of an ensemble of estimations, obtained from independent decision 134 
trees trained on different set of samples (limiting the problems of over-adjustment or the noise 135 
influence on data). 136 

Whatever the considered parameter derived from the Radarsat-2 images, an independent 137 
statistical algorithm was trained and validated on a randomly partitioned subset of the initial dataset 138 
(each subset of data containing half of the collected points). This procedure was repeated ten times. 139 
Finally, the average values of the coefficient of determination (R²) and the root mean square error 140 
(RMSE) were derived from the comparison between the observed and estimated values of the SSM. 141 

3. Results 142 

3.1. Comparison of statistical performances obtained using parameters derived from SAR images 143 

An overview of the statistical performance is presented in Figure 2, summarizing the R² and 144 
RMSE values obtained by comparing the SSM ground measurements to the estimates. The statistical 145 
approach is used with one of the parameters derived from the satellite, allowing to compare the 146 
results associated with each of the signals. A large disparity in performance levels is observed, with 147 
R² values varying between 0.30 and 0.67 and errors ranging from 4.73 to 6.71% m3·m−3. Among the 148 
best-performing parameters, estimates based on backscatter coefficients regardless of the 149 
polarization state show correlations greater than 0.60, as do the following polarimetric indicators: 150 
the first, second and third elements of the diagonal (T11, T22 and T33), eigenvalues (λ1, λ2, λ3 from 151 
Cloude–Pottier decomposition), Shannon entropy, Freeman double-bounce and volume scattering 152 
mechanisms, the total scattered power (SPAN). For these parameters derived from full-polarization 153 
images, the error level is between 4.8 and 5.3% m3·m−3. 154 
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 155 

Figure 2. Summarize of the statistical performances (coefficients of correlation and root mean square 156 
errors, bars and dots respectively) for the parameters derived from the Radarsat-2 images, for the 157 
training (grey) or validation (black) subsets of samples. 158 

3.2. Focus on promising parameters derived from the C-band images 159 

After the performance overview presented in the previous section, this section focuses on the 160 
best results. First of all, the comparison between in situ measurements of SSM and estimates based 161 
on backscatter coefficients, the Figure 3 showing the independent subsets of samples used during 162 
the training and validation steps (in grey and black, respectively). In these cases, SSM estimates 163 
based on signals acquired with HH or VV co-polarizations states are close (only results based on HH 164 
polarization state are presented hereinafter), with R² and RMSE close to 0.64 and 5.10% m3·m−3, 165 
respectively. These performance are slightly higher than the values associated with cross-polarized 166 
signals (only HV presented hereinafter), with an R² of 0.62 and an RMSE of 5.21% m3·m−3. These 167 
satellite signals have already been used to estimate SSM in previous studies [1-3], thus providing a 168 
useful baseline level of precision for comparing results obtained with polarimetric indicators. 169 

 

(a) 

 

(b) 

Figure 3. Comparison between the values of observed and estimated surface soil moisture, using the 170 
backscattering coefficients acquired in the C-band with polarization states HH (a) and HV (c). The 171 
grey and black dots represent the estimations performed considering the training or validation 172 
subsets of samples, respectively. 173 
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Among the tested parameters, only 3 cases are finally presented on Figure 4, with estimates 174 
based on the following polarimetric indicators: Shannon entropy, Freeman double-bounce and T22 175 
(Figures 4a, b and c, respectively). Whatever the considered parameter, the magnitude of 176 
performance obtained with one of these signals exceeds the reference level previously established 177 
using the backscattering coefficients, with R² greater than 0.641 and errors less than 5.07% m3·m−3. In 178 
the end, estimates based on T22 present the best performance level for the estimation of surface 179 
moisture at parcel scale based on microwave data acquired in C-band, with a correlation level of 180 
0.671 and an error of 4.84% m3·m−3. 181 

 

(a) 

 

(b) 

 182 

(c) 183 

Figure 4. Comparison between the values of observed and estimated surface soil moisture, using the 184 
following polarimetric indicators: Shannon entropy (a), Freeman double-bounce (b) and T22 (c) 185 
derived from Radarsat-2 images. The grey or black colors represent the estimations performed 186 
considering the training or validation subsets of samples, respectively. 187 

4. Discussion 188 

Comparisons between measured and estimated SSM values show some dispersion, regardless 189 
of the considered radar signal. In the case of estimates based on backscattering coefficients, previous 190 
studies carried out in various contexts (i.e., on study sites with contrasting agricultural practices) 191 
and with different methods (i.e., through empirical or modelling approaches) show a wide range of 192 
performance levels [1-3]. The values of the statistical parameters associated with the signals acquired 193 
in co- or cross-polarization obtained here, are in the range of the best results presented in these 194 
studies with R² varying between 0.61 and 0.84, and errors between 3.14 and 8.80% m3·m−3. 195 
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Regarding estimates based on polarimetric indices, the best results are in the same performance 196 
range as those based on backscattering coefficients. This comparison of performance over bare soil 197 
conditions is a novelty, the results obtained so far showed very limited performance of these satellite 198 
signals (with correlation levels (r) not exceeding 0.50, certainly explained by the range of variation of 199 
surface humidity values [6]) or a very low sensitivity to surface humidity [4-5]. In the end, this 200 
assessment is a necessary preliminary step for the use of these signals for the estimation of SSM 201 
during the vegetation period, the first studies having shown for the moment very limited results 202 
[7-9]. 203 

5. Conclusions  204 

This study presents a comparison of the performance of a set of parameters that can be derived 205 
from radar images acquired with the four polarization states on the same study site (showing 206 
important variations of the surface parameters). The results are established on the basis of a 207 
statistical approach, implemented independently for each of the considered satellite signals, and 208 
allowing to classify the levels of accuracy of the polarimetric indices and backscattering coefficients. 209 
Among the best results, Shannon entropy, Freeman double-bounce and T22 show performances 210 
equivalent or even superior to those obtained with the backscattering coefficients. 211 

The analysis presented in this study are a first step in the perspective that would lead to 212 
propose a new approach to estimate SSM. The next step would be to determine the combination of 213 
polarimetric indices allowing a monitoring of SSM, without recourse to exogenous data, whether on 214 
the level of roughness or texture. 215 
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