



# Therapeutic bio-compounds from avocado residual biomass





Minerva C. García-Vargas<sup>1,‡,\*</sup>, María del Mar Contreras<sup>2,3,‡,\*</sup>, Eulogio Castro<sup>2,3</sup>

<sup>1</sup>Tecnológico Nacional de México / Instituto Tecnológico de Zitácuaro; minerva.gv@zitacuaro.tecnm.mx (M.C.G.V.)

<sup>2</sup>Department of Chemical, Environmental and Materials Engineering

<sup>3</sup>Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén (UJA), Jaén, Spain; mcgamez@ujaen.es (M.d.M.C.); ecastro@ujaen.es (E.C.)

\*Both authors contribute equally; \*Correspondence

#### Introduction

The use of natural extracts with pharmacological activity is of great interest because they have therapeutic potential in the treatment of different diseases with fewer side effects. In this context, agri-food waste, as a plant matrix, can also be applied to look for natural compounds with bioactive properties.

## **Objectives**

To review the pharmacological potential of avocado waste (peel, stone and leaf), the chemical composition of the extracts, and to compare the antioxidant activity reported in literature with that of extracts obtained using water as a solvent for environmentally friendly extraction.



#### Material and Methods

•A bibliographic research was carried out for finding and accessing reviews, articles in academic journals, institutional repositories, archives using databases and search engines. Most recent literature was selected (mainly, since the last five years).

•Antioxidant extracts were obtained as follow:



Conditioning

Air-drying

Milling < 1 mm

Soxhlet extraction water

Aqueous extract

Soxhlet extraction ethanol Ethanolic extract

- •Total phenolic content (Folin-Ciocalteu method)
- •Total flavonoid content (aluminum chloride colorimetric method)
- •ABTS radical scavenging and Ferric Reducing Antioxidant Power (FRAP) assays.

### Results and discussion

| Bioactive properties         |                                                                                                                                                                                    |                                                                     |                         |      |  |  |  |  |  |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------|------|--|--|--|--|--|
| Avocad o part                | Pharmacological action                                                                                                                                                             | Bio-compound                                                        | Study type <sup>a</sup> | Ref. |  |  |  |  |  |
| Stone                        | Antioxidant and cancer inhibitory activity                                                                                                                                         | Polyphenols                                                         | IVT                     | [1]  |  |  |  |  |  |
| Stone                        | Moderate activity against epimastigotes and trypomastigotes                                                                                                                        | trihydroxyheptadecane and<br>trihydroxy-nonadecane<br>derivatives   | IVT                     | [2]  |  |  |  |  |  |
| Stone<br>and leaf            | Pro-apoptotic effect on Jurkat<br>lymphoblastic leukemia cells that are<br>eliminated through an oxidative<br>stress mechanism.                                                    | NR                                                                  | IVT                     | [3]  |  |  |  |  |  |
| Peel                         | Antibacterial activity against a wide<br>range of infectious agents.<br>Anti-oxidative properties.<br>Antimicrobial properties, including<br>fungi, yeasts, bacteria, and viruses. | Phenolic compounds<br>Alkaloids                                     | IVT                     | [4]  |  |  |  |  |  |
| Leaf                         | Antinociceptive effect on UVB radiation-induced skin injury in mice. Treatment of the pain associated with sunburn.                                                                | Phenolic compounds such as (+)-catechin, chlorogenic acid and rutin | IVV                     | [5]  |  |  |  |  |  |
| Leaf                         | Antioxidant activity.                                                                                                                                                              | Phenolic compounds,<br>including phenolic acids<br>and flavonoids   | IVT                     | [6]  |  |  |  |  |  |
| Stone                        | Anti-inflammatory activity.                                                                                                                                                        | Perseorangin                                                        | IVT                     | [7]  |  |  |  |  |  |
| aIVT: in vitro; IVV: in vivo |                                                                                                                                                                                    |                                                                     |                         |      |  |  |  |  |  |

| Total phenolic content (TPC), total flavonoid content (TFC) and |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|--|--|--|--|--|--|--|--|
| antioxidant activity determined by the ABTS and FRAP assays     |  |  |  |  |  |  |  |  |
|                                                                 |  |  |  |  |  |  |  |  |

| rait  | method                           | Joivent                            | (g GAE/kg) | (a DE/ka) | (g TE/kg) | (g TE/kg) | Kei.       |
|-------|----------------------------------|------------------------------------|------------|-----------|-----------|-----------|------------|
| Peel  | Soxhlet extraction               | Water                              | 266        | 342       | 281       | 245       | This study |
|       | Boiling                          | Water                              | 20         | 11        | ND        | 23        | [8]        |
|       | Ultrasound-assisted extraction   | 80% Ethanol                        | 64         | ND        | 198       | ND        | [9]        |
|       | Homogenization                   | 70% Acetone                        | 90         | ND        | ND        | ND        | [10]       |
|       | Homogenization                   | 70% Acetone                        | 51         | ND        | ND        | ND        | [11]       |
|       | Stirring in bath                 | 50% Ethanol                        | 31         | ND        | 66        | 110       | [12]       |
|       | Homogenization                   | 50%<br>Methanol and<br>70% acetone | 137        | ND        | ND        | 137       | [13]       |
|       | Heated & filtered                | Water                              | 52         | 2         | ND        | ND        | [4]        |
| Stone | Soxhlet extraction               | Water                              | 18         | 27        | 25        | 19        | This study |
|       | Boiling                          | Water                              | 6          | 3         | ND        | 10        | [8]        |
|       | Ultrasound-assisted extraction   | 80% Ethanol                        | 57         | ND        | 162       | ND        | [9]        |
|       | Acelerated solvent<br>extraction | 50% Ethanol                        | ND         | ND        | 88        | ND        | [14]       |
|       | Homogenization                   | 70% Acetone                        | 61         | ND        | ND        | ND        | [15]       |
|       | Homogenization                   | 70% Acetone                        | 41         | ND        | ND        | ND        | [11]       |
|       | Homogenization                   | 50% methanol<br>and 70%<br>acetone | 81         |           | ND        | 77        | [13]       |
|       | Microwave-assisted extraction    | 70% Acetone                        | 307        | ND        | 607       | ND        | [16]       |
|       | Microwave-assisted<br>extraction | 58.5% Ethanol                      | 254        | ND        | 516       | ND        | [16]       |

### Conclusions

- In vitro and in vivo studies suggest that avocado waste possesses bioactive properties. Phenolic compounds are generally the antioxidant compounds found in the extracts, but other phytochemicals have been identified in active extracts with anti-inflammatory and trypanocidal activity, including a glycosylated benzotropolone and trihydroxyheptadecane and trihydroxynonadecane derivatives.
- Nonetheless, further in vivo and clinical studies are required to confirm these studies that enable the development of functional ingredients for applications in the food, nutraceutical, pharmaceutical and cosmetic sectors.

## Acknowledgements

-Authors thank

The FEDER UJA project 1260905 funded by "Programa Operativo FEDER 2014-2020" and "Consejería de Economía y Conocimiento de la Junta de Andalucía". M.C.G.V. thanks the grant "Comisión para estadía técnica del Tecnológico Nacional de México/Instituto Tecnológico de Zitácuaro y Universidad de Jaén".

## Bibliography

1 Dabas, D.; Elias, R. J.; Ziegle, G. R.; Lambert, J. D. In Vitro Antioxidant and Cancer Inhibitory Activity of a Colored Avocado Seed Extract. International Journal of Food Science 2019, 2019, doi:10.1155/2019/6509421.
2. Abe, F.; Nagafuji, S.; Olawa, M.; Kinjo, J.; Alahane, H.; Ogura, T.; Martinez-Alfaro, M.A.; Reyes-Chilpa, R. Typanocidal constituents in plants Sr. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in the seeds of Persea americana. Biological and Pharmaceutical Bulletin 2005, 21 1314–1317, doi:10.10.1248/bjbb.22.1314.

3. Bonilla Porrus, A.R.; Salazaz-Ospina, A.; Jimener-Dei-Rio, M., Pereañez-Jimener, A.; Velez-Pardo, C. Pro-apoptotic effect of Pereas americana vir. Hiss. Quisocado) on Jurkat I ymphoblastic leukemia cells. Pharmaceutical Biology 2014, 524, 534–656, doi:10. 2109/13880209.2013.842599.
Aliana-Jan, M.; Daris an Regent Kumar, V.; Vilhyay, T.G.; Davis Art Antioidant, Antifisherial Activity and Phytoactive Compounds of Aqueous Extracts of Avocado Furit Peri Forn Ethiops, Linear International Journal of Peptide Research of Peptide Research and Therapeutics 2007, 26, 1549–1557, doi:10. 1007/s1098-019-09965-6
5. Deutschle, W.C. K.N.; Brusco, I.; Plana, M.; Faccin, H., de Carvalho, L. M.; Oliveira, S.M.; Vilana, C. Perea americana Milli crude extra chibits antinociceptive effect on UVB radiation-induced skin layly in mice. Elimanmopharmacology 2019, 27, 323–318, doi:10.1007/s10978-018-0441-9.
6. Castro-López, C., Vilana, D.; Para, M.; Faccin, H., de Carvalho, L. M.; Oliveira, S.-M.; Coulferer, Devis A.; Coulferer, Devis A.; Coulferer, Devis A.; Coulferer, Devis A.; Medina-Herren, N.; Quirer-Arola, V.C. Fornia antinocidant activity of leaf purified Mydroalcoholic extracts from seven mechanica activists from seven mechanica modistratists from seven mechanica modistratists from seven mechanica modistratists from seven mechanica modistratists from seven mechanical modistrations and antioxidant activity of leaf purified Mydroalcoholic extracts from seven mechanical modistrations and antioxidant activity of leaf purified Mydroalcoholic extracts from seven mechanical modistrations and antioxidant activity of leaf purified Mydroalcoholic extracts from seven mechanical modistrations and antioxidant activity of leaf purified Mydroalcoholic extracts from seven mechanical modistrations and antioxidant activity of leaf purified Mydroalcoholic extracts from

dos:10.339/molecules/40/10173.
7. Dabas, D.; Ziegjer, G.R.; Lambert, J.D. Anti-Inflammatory Properties of a Colored Avocado Seed Extract. Abbreviation. Adv. Food Technol. Nutr. Sci. Open J. 2019, 5, 8–12, doi:10.17140/aftnsoj-5-151.
8. Calderón-Dilver, M.; Escalona-Buendia, H.B.; Medina-Campos, D. N.; Pedraza-Chavert, J.; Pedroza-Chavert, J.;

Calderino-Oliver, M.; Excalons-Buendia, H.B.; Medina-Campos, O. N.; Pedraza-Chaverri, J.; Pedraza-Islas, R.; Ponce-Alquicira, E. Optimization of the antioxidant and antimicrobial response of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010.016 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and Technology 2016, 65, 46-icit.010 () [No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and No. 10.00 of the combined effect of nisin and avocado byproducts. LWT - Food Science and No. 10.00 of the combined effect of nisin and nisin and No. 10.00 of the combined effect of nisin and nisin and No. 10.00 of the combined effect of nisin and nisin and No. 10.00 of the combined effect of nisin and No. 10.00 of the combined effect of nisin and No. 10.00 of the combined effect of nisin and No. 10.00 of the combined effect of nisin an

Louisto, Et., Tempoolid, M.A., Matias D. Alemons, S., Viettes, R.L., Minarelli, P.R. Chemical composition and anticidate mid-total purple and by products of avocated hass. Revista Sensitian de Futucultura 2014, 36, 417–422, doi:10.1109/0100-2015-001/12.

10. Selection of the Company of the

10 Rodriguez-Carono, O., Monarous-Carono, O., Monarous-Carono, O., Carono, O., Ca

13. Perma, R.; Leong Chang, W.; Seale, B.; Hamid, N.; Kam, R. Converting industrial organic waste from the cold-pressed avocation of updoutcion line into a potential flood preservative. Food Chemistry 2020, 306, 125535, doi:10.1016/j.foodchem.2019.125635.
14. Figurera, J. G. Borris's Limera, I.; Lozano-Sánchez, J. Seguin-Carrietor, O. Amprehensive Naturalical and other polar compounds in the seed and seed coal of vaccode by PMC-DADS 257-07010-W. More Great Research International 2018, 105, 752–753, doi:10.1016/j.foodres.2017.11

Rodrigues-Carpens, J.G., Morcuende, D., Estévez, M. Arocado by products as inhibitors of color deterioration and lipid and protein oxidation in rww prorine patties subjected to chilled storage. Meat Science 2011, 89, 166-173, doi:10.1016/j.meatxi.2011.04.013.
Araji, R.G., Rodrigues-Isass, R.M., Rigit, H.A., Cowes-Saibles, M., Piradod, M.R., Equilar, C.N. Process optimization of microwave-assisted extraction of bioactive molecules from avocate seeds. Industrial frozp and Products 2020, 143, 11223, doi:10.1016/j.meatxi.2011.04.013.