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Abstract: Certain challenges like the presence of highly complex structure (blood-brain barrier 
(BBB)), P-glycoprotein efflux, and the particular enzymatic activity stand in the way of the 
successful delivery of the drug moieties to the brain and make them fruitless. Many efforts have 
been conducted to overcome the previous. Direct delivery of drugs to the brain after the intranasal 
application is one of those strategies since it holds a great hope to raise the chances of drug moieties 
to the brain. Nanoparticles could be the potential to improve nose-to-brain drug delivery since they 
are able to protect the encapsulated drugs from biological and/or chemical degradation and increase 
their penetration across biological barriers. Based on the fact that neuroinflammation is associated 
with neuron death and neurodegenerative diseases like Alzheimer’s, nonsteroidal anti-
inflammatory drugs (NSAIDs) might play a positive role in the disease. The present study aimed to 
employ the QbD approach for the first time in optimizing polymeric and lipid-based nanoparticles 
for the nose-to-brain delivery of Meloxicam (MEL), and to perform a comparison between the pure 
drug and the formulated nanosystems regarding dissolution profiles, permeability, and 
mucoadhesiveness. 

Keywords: nose to brain; polymeric nanoparticles; solid lipid nanoparticles; solid lipid 
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1. Introduction 

The precense of the blood–brain barrier (BBB) forms the major drawback to the successful 
delivery of the brain targeting moieties to their active site. On the other hand, the P-glycoprotein 
efflux supports the preventing role of the BBB by transporting the particles out of the CNS. However, 
this physiological protective barrier is considered s a key challenge to the pharmaceutical fraternity, 
with a need to circumvent it so as to deliver drugs to the brain in various CNS disorders [1–3]. 

Nose to Brain delivery route holds a great promise to overcome the BBB, since it transports the 
drug directly to the brain along the olfactory and trigeminal nerve pathways. These nerve pathways 
initiate in the nasal cavity at olfactory neuroepithelium and terminate in the brain [4]. 

Several clinical studies concluded that long-term use of non-steroidal anti-inflammatory drugs 
(NSAIDs) may protect against the onset of Alzheimer’s disease (AD) [5]. Among those, meloxicam 
exerts its pharmacological properties by inhibiting the enzymatic activity of cyclooxygenase-2 (COX-
2)[6], which linked with a neuroprotective action in Alzheimer’s disease [7–10]. Unfortunately 
meloxicam is a lipophilic drug with a high potency and poor water solubility [11] which decreases 
its bioavailability when it is applied following the routine routs of administration. 
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The strategy of designing drugs in an encapsulated form of nanoparticles (NPs) to target the 
olfactory epithelium could potentially improve the direct CNS delivery of drugs—including biologics 
[2]. Nanostructured drug delivery systems have been accomplished with an increase in nasal 
permeability and control drug release [12]. Lipid-based and polymeric nanoparticles have recently 
attrack the attention for this purpose, Solid lipid NPs (SLNs), as a lipid-based formulation, offers an 
improvement to the nose-to-brain drug delivery since they are able to protect the encapsulated drug 
from biological and/or chemical degradation and enhance its characters regarding nasal retention 
time, good application properties, and adhesion of the SLNs to mucous membranes [13]. On the other 
hand, polymeric nanoparticles show higher stability, variety of the preparation methods, controlled 
release of the drug [14]. 

Since there are many factors can affect the characteristics and properties of the previously 
mentioned nanosystems, the application of QbD approach presents a logic strategy that saves time, 
cost, and efforts when developing complex systems such as the nanosystems [14]. Starting by the 
definition of the quality target product profile (QTPP), then the critical process parameters (CPPs) 
and critical material attributes (CMAs) that can highly affect the critical quality attributes (CQAs) of 
the product [15]. 

In the present research, two types of nanoparticles were prepared following a QbD approach. 
Physical, chemical, and morphological characterization were conducted. The following step was to 
evaluate their in vitro behavior regarding release profile, permeation and mucoadhesion properties. 
Correspondingly, a profound comparison was performed followed by the selection of the optimized 
nanocarrier system to be a successful candidate for nose-to-brain delivery of anti AD drug 
formulation. 

2. Experiments 

2.1. Materials 

Cholesterol was purchased from MOLAR Chemicals (Budapest, Hungary), while 
Phosphatidylcholine, Pluronic F68, Tween80, and PVA were supplied by Sigma Aldrich (Steinheim-
Germany). Meloxicam was obtained from Egis Pharmaceuticals Ltd. (Budapest, Hungary). Trehalose 
dihydrate, Mannitol, as well as all the organic solvents (analytical grade) were purchased from Merck 
(Darmstadt, Germany). 

2.2. Preparation of MEL Loaded NPs 

2.2.1. MEL Loaded SLNs 

MEL loaded SLNs were prepared following a modified double emulsion (W1/O/W2) solvent 
evaporation (DESE) technique [45]. MEL was dissolved in 0.1 M NaOH solution formulating the W1 
Phase. The oily phase was prepared by dissolving phosphatidylcholine in cyclohexane. The primary 
emulsion was formed by adding the W1 phase dropwise into the organic phase using a homogenizing 
mixer (Hielscher, Germany) (0.5 cycles& 75% amplitude) for 1 min. The resultant nanoemulsion was 
then added dropwise into the surfactant aqueous solution using the homogenizing mixer (0.5 cycles& 
75% amplitude) for 1 min. The final mixture was left then to stir over the night using a magnetic 
stirrer to allow the evaporation of the organic solvent and thus formulation of the SLNs. 

2.2.2. MEL Loaded PLGA NPs 

MEL loaded PLGA NPs were prepared using a double emulsion (W1/O/W2) solvent evaporation 
(DESE) technique [16]. First, formation of a primary W1/O emulsion, where the aqueous solution of 
the MEL was added to the PLGA solution in ethyl acetate upon sonication in ice bath. This was 
followed by the formation of a double emulsion (W1/O/W2) by dispersing the primary emulsion in 
an external aqueous phase containing poly vinyl alcohol (PVA) as a stabilizer, with the use of 
sonication in ice bath. Finally, organic solvent evaporation over the night resulted in the formation of 
MEL loaded NPs. 
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Both types of NPs were harvested by centrifugation at 16000× g for 1 h at 10 °C (Sigma, Germany) 
and washed 3 times with deionized water to remove unentrapped drug, surfactants and remaining 
organic solvent. The NPs were then resuspended in 2 mL of 10% (w/v) trehalose aqueous solution, 
frozen at −20 °C, and were finally freeze-dried (Christ, Germany) at −40 °C for 72 h. 

2.3. Characterization of NPs 

2.3.1. Mean Particle Diameter, Size Distribution and Zeta Potential 

The average hydrodynamic diameter (Z-average), polydispersity index (PDI), and surface 
charge (zeta potential) of the NPs were analyzed in folded capillary cells, using Malvern nano ZS 
instrument (Malvern Instruments, Worcestershire, UK). 

2.3.2. Encapsulation Efficacy and Drug Load 

The obtained NPs were separated from the preparation medium by centrifugation and washed 
3 times, each time was followed by a centrifugation to obtain NPs pellets. Meloxical then was 
extracted using chloroform. The mixture was moved to a separatory funnel and the aqueous phase 
was withdrawn to determine its drug content by HPLC, and the EE and DL were calculated according 
to the following equations: 

EE = ୘୦ୣ ୡୟ୪ୡ୳୪ୟ୲ୣୢ ୟ୫୭୳୬୲ ୭୤ ୑୉୐ ୣ୬ୡୟ୮ୱ୳୪ୟ୲ୣୢ ୧୬ ୲୦ୣ ୤୰ୣୣ୸ୣିୢ୰୧ୣୢ ୗ୐୒ୱ
୘୭୲ୟ୪ ୟ୫୭୳୬୲ ୭୤ ୑୉୐ ୳ୱୣୢ ୧୬ ୲୦ୣ ୮୰ୣ୮ୟ୰ୟ୲୧୭୬

 × 100  

DL = ୘୦ୣ ୡୟ୪ୡ୳୪ୟ୲ୣୢ ୟ୫୭୳୬୲ ୭୤ ୑୉୐ ୣ୬ୡୟ୮ୱ୳୪ୟ୲ୣୢ ୧୬ ୲୦ୣ ୤୰ୣୣ୸ୣିୢ୰୧ୣୢ ୗ୐୒ୱ
୘୦ୣ ୵ୣ୧୥୦୲ ୭୤ ୲୦ୣ ୤୰ୣୣ୸ୣିୢ୰୧ୣୢ ୗ୐୒ୱ

 × 100  

2.3.3. Scanning Electron Microscopy (SEM) 

The morphological appearance of NPs was investigated using scanning electron microscopy 
(SEM) (Hitachi S4700, Hitachi Scientific Ltd., Tokyo, Japan) at 10 kV. 

2.3.4. Fourier-Transform Infrared Spectroscopy (FTIR) 

The chemical interactions between the drug and excipients were analyzed by a Thermo Nicolet 
AVATAR FTIR spectrometer (Thermo-Fisher, Waltham, USA. 

2.3.5. X-ray Powder Diffraction XRPD 

The X-ray powder diffractograms of citral SLNs, GMS, and the physical mixture of citral and 
GMS were obtained in the angular range of 3–40° 2θ at a step time of 0.1 s and a step size of 0.007°at 
ambient temperature. Monochromatic CuΚα1 radiation (with λ = 1.5406 Å) at 40 kV and 40 mA was 
used as the X-ray source. The same was repeated with the polymeric NPs. 

2.3.6. Dissolution Test 

Dissolution of meloxicam and the drug release from MEL-NPs was determined using a dialysis 
bag diffusion technique using a dialysis membrane [17–19]. The samples were analyzed 
spectrophotometrically at λ max of 346 nm (Jasco V730 UV-VIS spectrophotometer (ABL&E-JASCO 
Ltd., Budapest, Hungary). 

2.4. Permeation Test 

In vitro permeation of the prepared NPs was investigated using Side-by-side type apparatus. 
An accurate weights of MEL and MEL NPs equivalent to 1 mg of MEL were suspended in 9 mL 

of simulated nasal electrolyte solution (SNES), then placed in the donor chamber. On the other hand, 
9 mL of pH 7.40 phosphate buffer was placed in the acceptor chamber. A semi-permeable cellulose 



Proceedings 2020, 4, x FOR PEER REVIEW 4 of 11 

 

membrane, previously impregnated in isopropyl myristate for 1 h, was placed between the two 
chambers as membrane to mimic the nasal mucosa. 

Diffusion was investigated for 1 h comparing pure MEL, optimized SLNs formulation, and 
optimized PLGA NPs. 

2.5. Mucoadhesiveness Test 

Mucoadhesion was determined following the direct method (turbidimetric method) as 
following: briefly, the mucin was in PBS 6.4 (0.5 mg mL−1) and the NPs were mixed and incubated 
at 37 °C with continuous stirring with predetermined times of 1, 2, 3 and 4 h [20,21]. 

3. Results 

3.1. Risk Assessment 

Risk assessment was conducted to rank and prioritize the factors with the highest impact on 
product quality. The first step of QbD-based risk assessment study was to set the QTPP encompassing 
the desired quality attributes in MEL-NPs, followed by the selection of CPPs and CMAs. The previous 
is summarized and ranked as in Figure 1 

 

Figure 1. Risk assessment of the MEL-loaded nanoparticles showing the relationship between QTPPs- 
CQAs, CQAs-CMAs, CQAs-CPPs with with the calculated severity scores in decreasing order of risks. 
Abbreviations: QTPP-quality target product profile; CQA-critical quality attributes; CMAs-critical 
material attributes; CPP-critical process parameters; CNS central nervous system, ZP zeta potential, 
EE encapsulation efficacy L-low; M-medium; H-high. 

3.2. Morphology, Size, ZP and EE 

The resulted NPs were smooth and spherical in shape as shown in Figure 6. 
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Figure 2. SEM photos for the obtained nanoparticles, where: (A): SLNs, (B): PLGA NPs. Abbreviation: 
SEM Scanning electrome microscope, SLNs: solid lipid nanoparticles, PLGA NPs: Poly (L-lactide co-
glycolide acid nanoparticles. 

Size, ZP, and EE are listed in table. 

Table 1. size zeta potential and encapsulation efficacy of the optimized nanoformulations. 

Sample Size (nm) ZP EE% 
PLGA NPs 142.02 ± 12.83 −16.2 ± 1.81 87.26 ± 3.16% 

SLNs 94.76 ± 7.41 −43.65 ± 1.47 72.23 ± 2.84% 

3.3. Compatibility Study 

The FT-IR spectra, XRD patterns of MEL, both loaded NPs formulations, and the used excipients 
are presented in Figure 8. 

 

Figure 3. FTIR spectras and XRD patterns of the nanoparticles and the used materials of 
preparation. 
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3.4. In vitro Release 

The in vitro dissolution profiles of pure MEL and MEL loaded NPs were investigated in 
intranasal-simulated conditions, using simulated nasal electrolytic solution (SNES) medium (pH of 
5.6) and the results are shown in Figure 4. 

 

Figure 4. Dissolution behaviour of the pure nanoparticles and the prepared nanoparticles. 

3.5. In Vito Permeation 

Permeation test has been performed in vitro for pure MEL solution and MEL-NPs, following 
similar conditions for nose-to-brain delivery route (Figure 5). 

 
Figure 5. Permeability results of the pure meloxicam and the prepared nanoparticles. 

3.6. In vito Mucoadhesion 

The mucoadhesion was determined by turbidity analysis method to understand how the NPs 
will be retained, since a strong mucoadhesion suggests a close contact with absorption site, thus 
ensuring the effective absorption following the nasal administration (Figure 6). 
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Figure 6. Mucin binding efficacy of the prepared nanoparticles. 

4. Discussion 

Analyzing the results of the risk assessment as a part of QbD and based on the risk priority 
number RPN demonstrated the most highly influential CPP was sonication time, while the most 
highly influential CMAs were lipid/polymer type, lipid/ polymer concentration, surfactant type and 
surfactant concentration as shown in Figure 7. 

 

Figure 7. CMAs CPPs affecting the formulation of the nanoformulation, of which (A) related to the 
polymeric nanoparticles, (B) related to the solid lipid nanoparticles. Abbreviation: CMAs critical 
material attributes CPPs critical process parameters. 
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Both types of NPs comply with the size requirement of the administration via the nose-to-brain 
route which preferred to be up to 200 nm [22,23] 

The zeta potential values obtained for PLGA NPs and SLNs were −16.2 ± 1.81, −43.65 ± 1.47 mV, 
respectively, which is logical due to the negative charge of phosphatidylcholine estimated at between 
−10 mV and −30 mV at neutral pH [24] due to the presence of phosphate and carboxyl groups, while 
the negatively charged carboxyl groups on PLGA only are the cause behind the negative charge. 

The FTIR spectra of the NPs showed that no changes occurred in the MEL chemical structure 
and did not present a significant difference in the main functional groups of MEL. The absorption 
band at 3290 cm−1 correspondings to -NH stretch appears to overlap with -OH group of 
phosphatidylcholines, which is represented at 3200–3400 cm−1. Likewise, the absorption band at 1650 
cm−1 match a slight shift of C=O. Hence, there is no interaction between MEL and the other SLNs 
excipients, and they are compatible with each other. 

Similarly, absorption peaks of the materials used for polymeric NPs preparation (PLGA, 
Poloxamer) exhibited compatibility with MEL since the previously mentioned two chemical groups 
of MEL were maintained the same after PLGA NPs formulations 

The XRD of MEL gave unique fingerprint patterns owing to its crystalline structure. However, 
both SLNs and PLGA NPs did not show the characteristic fingerprints for the drug in their XRD 
pattern. This confirms that the drugs are present in a nanocrystalline state in the NPs [25]. The 
previous results are in agreement with the results of FTIR. 

Based on Figure 4, it is evident that pure MEL demonstrates a poor solubility (5.10 ± 0. 9 µg/mL, 
over 360 min, at 35 °C) due to the chemical structure it has and the weak acidic character resulted in 
this medium (pKa = 3.43) [26]; fabrication of MEL in nanoformulations showed a significant increase 
in the dissolution rate than that of pure MEL (approximately 4–5 times higher), this goes in line with 
the results previously reported by Katona et al. and might be due to the nanosize and the increased 
specific surface area that the NPs have [27]. 

The release behavior from the NPs showed a sustained release pattern starting by a mild initial 
burst release during the first hour, where 12.94 ± 0.86%, 11.79 ± 0.74 of MEL was released from the 
PLGA NPs and SLNs, respectively, which has been frequently reported for polymeric NPs [28,29] 
and SLNs [13,17]. This could be explained by the presence of the surface-adsorbed drug on the NPs, 
in addition to the drug molecules that exist close to the surface having weak interactions with the 
NPs system. This was followed by a slow-release profile until 6 h, where only 25.26 ± 2.39%, 21.37 ± 
1.47 of cumulative MEL release was observed for PLGA NPs and SLNs, respectively as the 
encapsulated drug slowly diffused through the NPs core [17]. The previous results point out that the 
majority of the drug remained in the NPs after their contact with the nasal mimetic conditions, and 
able to be released inside the targeted position. 

The mucoadhesive strength was detected by calculating binding efficiency of mucin to PLGA 
NPs, and SLNs, which were 36.55%, 57.59%, respectively by the end of the experiment as Figure 6 
represents. Since mucin is a highly glycosylated and negatively charged protein, the negatively 
charged SLNs showed a modest affinity driving especially by electrostatic interactions between 
mucin and SLNs and since SLNs are higher negatively charged, the electrostatic interactions between 
them and mucin will be higher than those with PLGA NPs. This observation is in close agreement 
with previous studies [30,31] 

A significant enhancement of MEL permeability through the semipermeable membrane was 
achieved when MEL was formulated in NPs in comparison with the pure MEL solution. This could 
be due to the nanoscale size of the prepared nanosystems which have the best nasal permeation 
properties as previously reported by Gänger et al. [22]. Moreover, the spherical and smooth surface 
of both NPs, as confirmed by SEM images, leads to the least friction with the membrane surface in 
comparison with the needle-shape particles [32]. Stabilizing these NPs using poloxamer, a 
permeation enhancer, further improve their permeation properties [33], by inhibiting the efflux 
pumps in addition to lowering the membrane fluidity when it is used in vivo [34]. 
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Interestingly, SLNs showed superior permeability over PLGA NPs, which might be explained 
by the lipophilic properties of these lipid-based nanosystems [35], which exceed those of PLGA NPs 
[32]. 

5. Conclusions 

The present research work put forward solid lipid nanoparticulate (SLNs) and polymeric based 
nanoparticles PBNs for the nose to brain delivery of meloxicam. QbD concept was employed for the 
first time to analyze the previously research efforts so we could define the critical process parameters 
and the critical material attribute. 

All the measurements were found to be in an acceptable range. Spherical nanoparticles were 
obtained for both SLNs and PBNs with a diameter of 142.06, 94.76 nm, and a ZP of −16.2, −43.65, 
respectively. The resulted nanoparticle showed good compatibility with used materials based on 
FTIR and XRD measurements. Higher entrapment efficacy and drug load were noticed with SLNs 
(87.26%, 2.64%, respectively). Better in vitro drug release, permeation and mucoadhesion 
accomplished the formulation of meloxicam in SLNs more than PBNs. However, ex-vivo data is still 
needed to investigate cell viability, permeability, and cytotoxicity. Then in vivo measurements are 
critical to detect brain concentration and distribution in between brain deferent parts evaluate the 
risk/benefit ratio. 

Author Contributions: Conceptualization, H.A., R.I., and I.C.; methodology, H.A., R.I., and G.K.; software: H.A., 
and G.K.; validation, H.A., and R.I.; formal analysis, H.A., R.I., and G.K. investigation, H.A., R.I. and G.K.; 
resources, H.A., R.I.; data curation, H.A., R.I., and G.K.; writing—original draft preparation, H.A.; writing—
review and editing, H.A., G.K., R.I. and I.C.; visualization, R.I. and I.G.; supervision, I.C.; project administration 
I.C. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Acknowledgments: The authors want to express their acknowledgement to the supporters. This study was 
supported by the Ministry of Human Capacities, Hungary (Grant 20391-3/2018/FEKUSTRAT) and by the 
National Research, Development and Innovation Office, Hungary (GINOP 2.3.2-15-2016-00060) and (GINOP 
2.3.4-15-2020-00006) projects. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 

The following abbreviations are used in this manuscript: 

BBB blood brain barrier 
NSAIDs non steroidal anti inflammatory drugs 
QbD quality by design 
RA  risk assessment  
Mel meloxicam 
SLNs solid lipid nanoparticles 
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NPs nanoparticles 
EE encapsulation efficacy 
DL Drug load 
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FTIR Fourier-transform infrared spectroscopy 
XRD X-Ray Powder Diffraction 
CQAs critical quality attribiutes 
CMAs critical material attribiutes 
QTPPs quality target product profile 
CPPs critical process parameters 
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