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Abstract: 2,5-diketopiperazines (DKP) are the simplest cyclo-peptides in nature, which could play 

a key role in the origin of life. They are ubiquitous in microorganisms, higher species, in food and 

beverages. These dipeptides have been known since the beginning of the 20th century but only 

recently have been enjoyed growing interest due to diverse noteworthy bioactivities like anticancer, 

antiviral, antioxidant, neuroprotective, and many more. DKPs have relevance in quorum sensing, 

cell-cell signaling, or as drug delivery systems. They have less toxicity, increased cell permeability, 

and binding affinity. Proline-containing DKPs have an extra-rigid conformation and are more 

resistant to degradation by enzymes. They represent an attractive subclass of cyclo-peptides with a 

high potential in future therapies. 
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1. Introduction 

The main aim of this mini-review is to provide a reader with an overview of scientific findings 

on diversity and enormous biological potential of the simplest natural cyclo-peptides in light of the 

newest literature, structural databases, and patents. Besides, we have emphasized the attractiveness 

of their pharmacokinetic profile in relation to the future innovative effective therapeutical and bio-

control agents. 

2. Cyclo-Peptides: General Considerations 

Recently, short peptides have been enjoyed greater and greater significant interest as a unique 

class of bio-molecules filling a therapeutic niche between small chemical drugs and macro-molecular 

agents with diverse well-known limitations. Oligopeptides are a primary source of bio-molecules, 

which are components of proteins participating in bio-processes. Therefore, they have significant 

advantages, like diverse bioactivities, high selectivity due to specific interactions of peptides with 

targets, low toxicity, because they do not accumulate in the organs, and amino acids are degradation 

products.  

On the other hand, shortcomings of the peptides, such as poor oral absorption, low stability in 

vivo, high conformational freedom, or low cell permeability, can not be neglected [1].  

Nevertheless, cyclic peptides have specific structural features resulting in a superior 

pharmacological profile [1,2]. Amino and carboxyl terminals are linked together with a peptide bond, 

forming a circular chain, which results in rigid conformation. This ”head to tail” cyclization leads to 

increased stability against proteolysis and better bioavailability. Besides, cyclo-peptides have less 

cytotoxicity, higher bioactivity, specificity and efficacy, increased cell permeability, or binding 

affinity [3].    
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3. Diketopiperazines 

Cyclic dipeptides containing a 2,5-diketopiperazine backbone, known also as cyclodipeptides, 

2,5-diketopiperazines (DKPs), piperazine-2,5-diones, 2,5-dioxopiperazines, or dipeptide anhydrides, 

represent a unique class of compounds with extra advantages in drug development [4]. The DKP 

scaffold consists of a six-membered ring with, or without, various substituents orientated in a defined 

way. It provides three-dimensionality, increased rigidity, chiral nature, enables the control of the 

substituent's stereochemistry, stimulation of the pharmacophoric peptide groups, promotes the 

intermolecular H-bonding interactions with bio-targets via corresponding sites of donors and 

acceptors [5]. Rigid DKP core enables to mimic preferential conformation of peptide and allow to 

dual behavior of amino acids, either constrained or flexible [6].  

It should be mentioned that even though 2,5-DKPs are the most popular in nature and therapies 

[4, 7], 2,3-DKPs and 2,6-DKPs are possible as well, see Scheme 1 [8].  

 

Scheme 1. Structure of 2,5-DKP (on the left), 2,3-DKP (in the middle) and 2,6-DKP (on the right). 

3.1. Historical Background & Occurence: Origin of Life 

In nature, imperative fundamental functions of amino acids are indisputable. The cyclic 

dipeptides probably play a key role in the origin of life in the context of chemical evolution. They 

could have relevance in the process of catalyse chiral selection and act as precursors in the formation 

of the peptide, which is considered an essential condition of the beginning of life [9].  

2,5-diketopiperazines (DKP) are the simplest naturally occurring cyclo-peptides. They are 

biosynthesized from amino acids, which are catalyzed through two enzyme families, both 

nonribosomal peptide synthetase and cyclodipeptide synthase enzymes, resulting in the formation 

of the two peptide bonds [10-14]. The DKP skeleton is ubiquitous in various environments, either in 

microorganisms, bacteria like Bacillus subtilis, Streptomyces, Pseudomonas aeruginosa, or Lactobacillus 

plantarum [15-17], marine and terrestrial fungi [18] as Aspergillus flavus or Alternaria alternata and 

Penicillium, respectively [19-20] or higher species, such as marine sponges like Dysidea herbacea and 

fragilis [21], but also proteobacteria Alcaligenes faecalis, algae, lichens, gorgonians, tunicates, plants, or 

animals venoms. Notably, they have been found in human central nervous system, gastrointestinal 

tract, and blood [22]. Additionally, they are present in food and beverages [4, 23-24]. DKPs can be 

chemical by-products, e.g. in Pu-erh tea, cocoa, dried bonito, roasted coffee, sake, beer, cheese, casein, 

chicken extract, or stewed beef, giving a special metallic bitter taste [25-28], but also in drugs because 

of intramolecular cyclization of the dipeptidyl moiety in active peptide-based substances. The latter 

is a common phenomenon in different therapeutics, in aminopenicillin, amoxicillin, ACE inhibitors 

[29-31], and so on. Notably, proteins and peptides can be cyclized to DKPs by heating [32].  

Surprisingly, these natural dipeptides have been known since the beginning of the 20th century 

[33,34] but they have been neglected for a long time. Only recently, they have been enjoyed greater 

and greater significant attention, and their biological profile is investigated in detail.   

3.2. Properties and Possibilities 

The simple biomolecules containing the bis-lactam core of DKP have a wide spectrum of 

biological activities, inter alia anticancer, T-cell mediated immunity, antiviral, nootropic and 

neuroprotective in neurodegenerative diseases (Alzheimer’s or Parkinson’s diseases and 

amyotrophic lateral sclerosis), cytotoxic, immunosuppressive, antibacterial, antifungal, 

antimutagenic, anti-inflammatory, antihyperglycemic, antiarrhythmic, antimalarial, antiparasitic, 

anthelmintic, insecticidal, antifouling, anti-prion, vasorelaxant or metabolic regulatory [5, 24, 34-37]. 

They have relevance in quorum sensing, improving the classical theory of quorum sensing, unique 
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communication manner between bacteria and gene regulation systems [38]. DKP ring plays a key 

role in fighting oxidative stress [39]. Moreover, they play role in ion-transport, cell-cell signaling, and 

a high affinity to many receptors and enzymes [4]. They are useful in delivery systems of drugs, 

which have low permeability to crossing the blood-brain barrier [34]. Additionally, cell-penetrating 

peptides containing DKP have better properties in relation to anti-cancer drugs. They provide high 

cell membrane penetration or transport cargo into the cell [3]. The DKPs can be easily synthesized 

through conventional procedures providing an attractive scaffold in new drug design due to its main 

simplicity and marvelous structural diversity [40-41]. They are an excellent model for theoretical 

studies in the context of the constrained structural scaffold with a relevant pharmacophore [4-5, 42]. 

Furthermore, they are used in the synthesis of many natural products, alkaloids [23]. DKP framework 

is present in culture broths fermented with lactic acid bacteria. Therefore, they provide an eco-

friendly approach for food and feed preservation [43]. 

3.3. DKP-Based Drugs 

Interestingly, many relatively new drugs, such as tadalafil, phosphodiesterase-5 inhibitor for the 

treatment of erectile dysfunction [44], retosiban, as an oxytocin antagonist for preterm labor [45], 

epelsiban, as an oxytocin antagonist in premature ejaculation in men [4], the vascular disrupting and 

tubulin-depolymerizing pinabulin, on the base of the marine fungal halimide, potential therapeutical 

agent in lung cancer [46-47], as well as other anticancer natural agents as ambewelamides, 

phenylahistin, dehydrophenylahistin [48], verticillin A [49], but also Aplaviroc for HIV [50], antiviral 

and immunosuppressive activities (gliotoxin and sirodesmin PL), antimicrobial pulcherimin, 

antibacterial albonoursin, brevianamide S or bicyclomycin, avrainvillamide [51], anti-inflammatory 

agents, e.g. FR106969 and FR900452 [6], and many others, contain DKP core.  

3.4. Cyclo-Dipeptides Containing Proline: Towards Effective Therapies 

Currently, the growing attention in terms of cyclic dipeptides containing proline moiety is 

noticeable. Among the amino acids, proline is unique due to its specific structure and a lot of 

biological properties [52]. Both L and D-proline-based DKPs, widespread in nature, are an interesting 

sub-family of cyclo-dipeptides [53]. It could be mentioned that they are more predominant in heated 

and fermented foods than another type of DKPs, even at the level of ~ 90 %. Pro-based DKPs are more 

easily generated in comparison to other DKPs and can be considered as significant components of 

flavor and bioactivity [28]. The structural complexity and bioactivity of them are highly impressive 

[54], inter alia in the stimulation of hematopoiesis, bacterial, viral, and fungal infections, food intake 

inhibition, control the activity of many receptors, as markers in the protein pyrolysates [55] and so 

on [28, 36, 56]. They have been potential as cytotoxic and anticancer agents, in treating renal 

inflammation [57] or cardio-metabolic disorders [58]. In the proline-containing cyclo-dipeptides, the 

2,5-DKP a six-membered piperazine nucleus is fused to pyrrolidine ring, which leads to prominent 

bio-properties, such as extra rigid heterocyclic structure, and consequently, inter alia greater 

resistance to degradation by enzymes. Proline- and hydroxyproline-based DKPs can form novel 

essential quorum sensing inhibitors, which are involved in intracellular communication [38]. They 

are also promising candidates in neurodegeneration prevention, e.g., in the treatment of Alzheimer 

disease [59], in flavor response [28] and so on.  

General mechanism of DKP formation was decribed by Gomes et al. [60], while mechanism of 

proline-based DKPs formation is proposed by Otsuka et al. [28; 9]. 

The diverse mechanisms of DKP bio-actions peptides as well as their targets have not been 

precisely known and understood yet. Nevertheless, the growing number of scientific reports in this 

topic are observable. As an example, neuroprotective action of diketopiperazine-(proline)based 

agents via different mechanisms are discussed by Cornachia et al. [34], while antibacterial, antifungal 

activities are considered by Zhao et al. [18]. They proved that presence of specific subtituents and 

other modifications have relevance for endowing bio-action. Propositions of mechanisms via inter 

alia different inhibitions were summarized. 
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3.5. Databases Survey 

The survey of the Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB 

PDB) [61] revealed 42 bio-complexes related to DKP moiety, including proline-based one, signed by 

reference codes: 6SSG, 6SSF, 6SSE, 6SSD [62], 6F0B, 6F0C [63], 41CT, 41Q7, 41PS, 41PW, 41Q9 [64], 

5YL4 [65], 6EZ3, 5MLQ, 5OCD, 5MLP [66], 4Q24 [67], 4E0T, 4E0U [68], 3S7T, 3OQJ, 3OQH, 3OQI [69], 

3OQV [70], 3NC6, 3NC7, 3NC3, 3NC5 [71], 3N1A [72], 2X9Q [73], 3G5H, 3G5F [74], 1W1T, 1W1P, 

1W1V, 1W1Y [75], 6VXV, 6VZB, 6WOS, 6VZA [76], 1O6I [77]. The latter represents proline-based 

cyclic-dipeptide as chitinase inhibitor with chemotherapeutic potential against fungi, insects and 

protozoan/nematodal parasites, see Figure 1. In the previous cases, insight into the mechanism of 

action of biomacromolecules, especially a new class of small proteins, cyclodipeptide sythases, the 

molecular bases of the interactions with DKP ring towards the design of more effective diverse 

therapetical agents are discussed. Interestingly, only one complex, 1QZR [78], contains 2,6-DKP core.  

 

Figure 1. Bio-complex containg proline-based 2,5-DKP moiety, 1O6I.pdb [76]. 

On the other hand, the thorough analysis of the Cambridge Structure Database (CSD) [79,80] 

leads to 256 entries of 2,5-DKPs, 52 2,3-DKPs and 5 hits of 2,6-DKPs (see Scheme, and Supplementary 

Materials).  

It is noteworthy that CSD collects a huge structural knowledge on potential peptide-based 

ligands that can be applicable at the macromolecular level. Small-molecular crystal structures, 

especially peptides and their derivatives, have a natural synergy with proteins. The rational design 

of modern effective ligands should be based not only on the 3D-structure of macromolecular target 

but also on potential ligands. Groom & Cole [81] said that the designers should try to „understand and 

exploit what small-molecule crystal structures tell them; it is just a matter of listening”.  

4. Conclusions and Future Prospects 

Taking all the above into account, we can conclude that DKPs in general, and proline-based 

DKPs peptides especially, offer a highly functionalized natural arsenal and huge potential as 

biological tools for either better understanding bio-mechanisms or future more effective therapies. 

These the simplest either natural or unnatural cyclo-peptides possessing economically beneficial 

biological properties are valuable molecular scaffolds in synthetic biology and protein engineering.  

Supplementary Materials: The following are available online at http://www.xxxxx, Table S1: Crystal structures 

containing DKP moiety, retrieved from the CSD. 
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