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Abstract: Dengue virus is a serious public health issue in tropical and subtropical regions. The global 

incidence of dengue necessitates the potent antiviral medication for the prevention of proliferation 

of the virus inside the human body. The DEN2 NS2B/NS3 protease presents in the dengue virus, is 

an attractive drug target due to its essential role in viral replication, survival, and other cellular 

activities. In traditional medicine, Carica papaya leaves have been used for the treatment of dengue 

fever in Sri Lanka, Pakistan, Malaysia. Therefore, phytochemicals present in Carica papaya leaves, 

have a potential anti-viral activity and can be used as strong drug candidates against the dengue 

virus. In this investigation, two phytochemical compounds in Carica papaya leaves: 5,7-

Dimethoxycoumarin and p-Coumaric acid were selected from the literature and then docked 

against the DEN2 NS2B/NS3 protease. The compounds showed strong interactions with favorable 

binding energies in the active site of DEN2 NS2B/NS3 protease. To validate the molecular docking 

results, the docked ligand-protein complexes were subjected to molecular dynamics simulation 

along with the apo form of the protein for 30 ns. The molecular dynamics simulation analysis 

comprising of root mean square deviation and fluctuation, the radius of gyration, hydrogen 

bonding, DSSP, and MM/PBSA revealed the stability of the apo and complex systems. Interactions 

formed by these compounds with residues Leu149 and Asn152 are found to be essential for the 

stability of the ligand-protein complex. The findings revealed that these phytochemical compounds 

depict the promising results against the DEN2 serotype of the dengue virus and the potential to 

work as therapeutic drugs. Further experimentation on the proposed compounds is necessary to 

validate the results and can lead to the development of strong inhibitors with improved activity. 
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1. Introduction 

Dengue virus (DENV) is a mosquito-borne flavivirus that has causes mild dengue fever to life-

threatening complications, dengue hemorrhagic Fever, and dengue shock syndrome, resulting in 

serious public health problems in tropical and subtropical regions [1,2,3]. The rapid spread of this 

virus, affecting over a million people has necessitates scientists to search for potent antiviral 

medication. The Dengue virus genome has consisted of a single-stranded, positive-sense, RNA 

molecule that encodes three (3) structural and seven (7) non-structural proteins. The three structural 

proteins as capsid © , pre-membrane/membrane (prM/M), and envelope (E), and non-structural (NS) 
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proteins are: NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 [4]. These non-structural proteins are 

responsible for viral replication and other cellular functions [5]. There are four types of Dengue virus 

(DENV-1 to DENV-4). The DENV- 2 is the cosmopolitan genotype of the four serotypes [6]. NS3 is a 

multifunctional protein with chymotrypsin-like serine protease, that binds to an NS2B cofactor and 

is involved in cleaving the DENV polyprotein [7-9]. This NS2B-NS3 protease complex plays a vital 

role in the processes of the viral polyprotein and for virus replication [10]. Thus, it an attractive target 

for antiviral drug development [11].  

Medicinal plants have been known and used for millionaires as a rich source of therapeutic 

agents all over the world. It has been recently reported that the importance of phytochemical 

compounds against DENV [12,13]. The Carica papaya is a flowering plant, which is native to Mexico 

and South America and is now cultivated in other tropical countries around the globe.  Recent 

reports have claimed that Carica papaya extracts have to depict several medicinal properties [14-16]. 

Presently, the use of Carica papaya plant extract has become popular as an unlicensed, also 

traditional herbal remedy for dengue infection in South East Asian countries like India, Malaysia, 

Pakistan, and Sri Lanka [17]. The leaves of the Carica papaya contain various types of 

phytochemicals, specifically phenolic compute [18]. Furthermore, recent studies suggesting that 

Carica papaya leaves have potential anti-viral activity against DENV.   

In this study, two phytochemical compounds: 5,7-Dimethoxycoumarin and p-Coumaric acid 

from Carica papaya leaves have been evaluated for their potential inhibitory activity against DENV 

NS2BNS3 serine protease, using molecular docking and molecular dynamics methods. Therefore, the 

knowledge and experience gathered from this study could contribute to the efforts in discovering 

novel and potent anti-viral agent agonist DENV. 

 

Figure 1. (a) 5,7-Dimethoxycoumarin, (b) p-Coumaric acid. 

2. Materials and Methods 

The three-dimensional crystallographic structure of DEN2 NS2B/NS3 serine protease was 

downloaded from the protein data bank (PDB ID 2FOM, 1.5 Å  resolution). 3D structures of the 5,7-

Dimethoxycoumarin, p-Coumaric acid compounds (Figure 1), and glycerol as a reference molecule, 

which was retrieved from the crystallographic structure, were constructed and geometrically 

optimized using ab initio B3LYP/6-31G(d) density functional theory methodology with the GAMESS 

software [19]. Molecular docking was performed using DOCK6 software [20,21]. The docking 

protocol was validated by re-docking the native ligand to the active site of the 2FOM receptor. It was 

performed using glycerol from the crystallographic structure as a reference. The best conformation 

was selected regarding the better-superimposed conformation and root mean square fluctuation 

value recorded. Then, the optimized structure was docked on to 2FOM receptor by DOCK6 software 

and a flexible docking process was performed using a scoring function ‘grid score’ for all ligands and 

then ranked them. Molecular dynamics (MD) simulations were performed with the best poses 

obtained from docking studies. All the MD simulations were performed by using GROMACS 4.6.5 

molecular dynamics software package and the protein topology was generated using the 

GROMOS54a7 force field [22-24]. The force field parameters for the two (2) ligand compounds were 

generated using the PRODRG server [25]. The docked complexes were placed in a center in a box of 

9×9×9 nm3 and solvated with SPC water [26]. Cl- ions were added to the system to uphold the electro-

neutrality of the systems. The Berendsen’s weak coupling algorithm was used to maintained 

temperature and pressure at 300 K and 1 bar. Electrostatic interactions were modeled by particle mesh 

Ewald (PME) with a short-range cut off of 1.2 nm while systems were simulated for 50 ns run with 2 
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fs time step [27]. The same MD protocol was applied for the apo-protein alone to investigate its 

stability.  

The stability of the above systems was studied in terms of root mean square deviations (RMSD) 

of the backbone of the protein, Root mean square fluctuation (RMSF), and radius of gyration of the 

protein. Furthermore, the secondary structure profile analysis of trajectories of the protein-ligand 

complexes and apo-protein was conducted using the Dictionary of Secondary Structure of Proteins 

(DSSP) analysis [28]. At the end of the simulations of complexes, the non-covalent interactions 

between ligand and the protein were analyzed by the LigPlot+v.14.5 software The binding free 

energies of protein-ligand complexes were calculated based on Molecular Mechanics–Poisson 

Boltzmann Surface Area (MM-PBSA) method using g_mmpbsa GROMACS utility [29,30]. The 

binding free energy comprises of three energetic terms potential energy in a vacuum, non-polar 

solvation energy, and polar solvation energy. 

3. Results 

3.1. Molecular Docking 

The validation results of the re-docking of the reference molecule showed the RMSD value of 

1.02 Å . Since an RMSD value is <2.0 Å  for the best-scored conformation, it is a successful prediction 

[31]. A view of the 5,7-Dimethoxycoumarin docked into protein is given in Figure 2(a). The docked 

structure of the p-Coumaric acid-protein is given in Figure 2(b). The recorded best grid score for the 

5,7-Dimethoxycoumarin-protein complex was -26.35 kcal mol-1. For p-Coumaric acid-protein was -

27.08 kcal mol-1 and it was bound to the same binding site as 5,7-Dimethoxycoumarin in protein. 

 

  

 

Figure 2. Docked complexes of (a) 5,7-Dimethoxycoumarin and (b) p-Coumaric acid. 

3.2. Molecular Dynamics Analysis 

Figure 3 represents the RMSD of the backbone of the ligand-protein complexes and apo-protein. 

The RMSD parameter indicates reasonable stability of proteins after binding with the ligands, and 

also in the apo-protein. 

The compactness of the ligand-protein systems presented in Figures 4 by calculates the radius 

of gyration (Rg) of the protein. The same parameter was calculated for apo-protein and is presented 

in the panel (c) of Figure 4. All the Rg values appear to be spread between 1.45 nm to 1.60 nm as can 

be seen in the figures. All the proteins exhibit reasonable stability by having a plateau variation of Rg 

in the last 10-20 ns of the MD trajectories. Therefore, it can be emphasized that the binding of ligands 

would not affect the structural stability of the protein. 

Conformational differences of individual amino acids in protein were compared by calculating 

the Root Mean Square Fluctuations (RMSF) of amino acids and are given in Figures 5. Close 
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examination reveals some minor differences in fluctuations of the amino acids of proteins in ligand-

protein complexes and that of in apo-protein. However, it can be seen that the overall structural 

integrity of proteins was preserved strengthening the conclusions drawn from the previous 

calculations. 

The DSSP analyzes were carried out for the configurations taken at every 100 ps of the 50 ns MD 

trajectories using the do_dssp utility of GROMACS software package. The time evaluation of the 

secondary structure of the ligand-protein complexes and apo-protein are presented in Figures 6. The 

results revealed that the secondary structure of all the systems including the apoprotein remains 

almost the same throughout simulations, indicating no significant secondary structure changes.  

The LigPlot analysis of the protein structures indicates that the ligands form strong hydrogen 

bonds with DEN2 NS2B/NS3 serine protease, specifically residue Leu149 and Asn152 (Figure 7,8). 

The number of hydrogen bonds was studied using the g_dist tool in the GROMACS program. 

Throughout the simulation time, the distance between the centers of mass of the two groups of atoms 

which were involved in hydrogen bond formation was maintained nearly at a constant value 

confirming the continuance, stability, and effectiveness of the hydrogenbonding. 

 

Figure 3. Backbone RMSD of (a) 5,7-Dimethoxycoumarin-Protein, (b) p-Coumaric acid-Protein 

complexes and (c) Apo Protein. 
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Figure 4. Radius of gyration of (a) 5,7-Dimethoxycoumarin-Protein, (b) p-Coumaric acid-Protein 

complexes and (c) Apo Protein. 

 

Figure 5. Root mean square fluctuation of (a) 5,7-Dimethoxycoumarin-Protein, (b) p-Coumaric acid-

Protein complexes and (c) Apo Protein. 

3.3. MM-PBSA Calculations 

The MM-PBSA analyses were conducted for the two (2) complexes to investigate their protein-

ligand interactions. The potential energy in the vacuum (van der Waals and electrostatic energy), 

polar solvation energy, nonpolar solvation energy (under the solvent-accessible surface area model), 

and the MM-PBSA binding free energy obtained from g_mmpbsa module in GROMACS molecular 

dynamics software package are listed in Table 1 below. The resultant binding free energies are large 

negative values indicating two ligands are spontaneously binding to the protein.  
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Table 1. Binding energy component and binding free energy for ligands from MM-PBSA (all energy 

terms are in kJ/mol). 

System 

Van der 

Waals 

energy 

Electrostatic 

energy 

Polar 

solvent 

enrgy 

Non polar 

solvent 

energy 

Binding 

free enrgy 

5,7-

Dimethoxycoumarin 
-85 ± 11 -10 ± 1 54 ± 7 -7.7 ± 0.8 -47 ± 3 

p-Coumaric acid -74 ± 14 -208 ± 58 155 ± 62 -10 ± 1 -138 ± 31 

 

 

 

 

Figure 6. The evolution of secondary structure changes of (a) 5,7-Dimethoxycoumarin-Protein, (b) p-

Coumaric acid-Protein complexes and (c) Apo Protein. 

(a) 

(b) 

(c) 
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Figure 7. Hydrogen bond interactions of 5,7-Dimethoxycoumarin-Protein complex from LigPlot 

v.145. 

 

Figure 8. Hydrogen bond interactions of p-coumaric acid-Protein complex from LigPlot v.145. 

4. Conclusion 

The molecular docking and molecular dynamics results indicate that the binding affinity of 5,7-

Dimethoxycoumarin, is less than that of p-Coumaric. However, overall results indicated that the 

ligands bind to the binding site of DEN2 NS2B/NS3 receptor via hydrophobic and hydrogen bonding 

interactions. Specifically, the MD study provides an important contribution to understand the 

stability of the DEN2 ligand-NS2B/NS3 serine protease complex system in aqueous solution. Thus it 

could be suggested that the binding of 5,7-Dimethoxycoumarin and p-Coumaric acid molecules have 

potential inhibitory activity against NS2B-NS3 serine protease. Moreover, it is a indication of Carica 

papaya might employ its antiviral activity by blocking the viral assembly mechanism of DENV2 virus. 

Therefore, this study provides a good platform to further investigations in terms of the 

pharmaceutical potential and biological functions of 5,7-Dimethoxycoumarin and p-Coumaric acid 

when it binds to DEN2 NS2B/NS3 serine protease at the molecular level and in vivo as well. 
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