1st International Electronic Conference on Plant Science

01–15 DECEMBER 2020 | ONLINE

Fruit-associated endophytes from olive cultivars with different levels of resistance to fruit fly and their relationship with pest infestation

Teresa Lopes, Vitor Ramos, Cristina Cameirão, José Alberto Pereira, Paula Baptista*

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança. Campus de Santa Apolónia, 5300-253 Bragança, Portugal.

* Corresponding author: pbaptista@ipb.pt

IECPS

2020

Abstract

Different olive cultivars exhibit different propensities to fruit fly infestation and the causes are still unclear. We want to disclose the potential role of the olive endophytes in conferring such susceptibility differences. Accordingly, the endophytic microbial composition of infested and non-infested fruits from cultivars Madural (susceptible to olive fly) and Cobrancosa (less susceptible) were studied. A culture-dependent approach was used, being the isolates identified by sequencing of their internal transcribed spacer (for fungi) and 16S rRNA gene regions (for bacteria). Overall, there was a larger consortium of bacteria associated to olives than fungi. The microbial communities were mostly composed of *Proteobacteria*, Actinobacteria, Ascomycota and Basidiomycota. Both host cultivar and infestation level had a negligible effect on microbial community composition. Despite this, it was found a clear positive association of microbial consortia with the resistant cultivar (Kocuria sp., Actinobacterium sp., Rhodococcus sp., Pseudomonas citronellolis, Aspergillus flavus, Stereum and Cladosporium sp.) and non-infested fruits (Kocuria sp., Stereum sp., and sp., *Vishniacozyma victoria*). Their function roles on host cultivar susceptibility/resistance to fruit fly is a topic that requires further studies.

Keywords: *Bactrocera oleae* Rossi; susceptibility of olive cultivars; bacteria; fungi; biocontrol

Susceptibility of Olive Tree Cultivars to Olive Fly Attack

The exact reason of differences on susceptibility is currently unknown.

Cumulative curves reached asymptote emphasising the adequate sampling

a

Bacterial Community

	ANOSIM	PERMANOVA
Cultivar	0.225***	0,021**
Infestation level	0.210***	0,013 ^{n.s.}

Fungal Community

	ANOSIM	PREMANOVA
Cultivar	0.216***	0,023**
Infestation level	0.189***	0,012 ^{n.s.}

IECPS

2020

Kocuria sp. Actinobacterium sp. Rhodococcus sp. Pseudomonas citronellolis Aspergillus flavus Stereum sp Cladosporium sp.	positively correlated with cv. <i>Cobrançosa</i>	<u>Pseudomonas sp.</u> <u>Curtobacterium citreum</u> <u>Ralstonia pickettii</u> <u>Aspergillus wentii</u>	positively correlated with cv. Madural
Kocuria sp.	positively correlated	Citrobacter koseri	positively correlated
Stereum sp.	with	Alternaria sp	with
Vishniacozyma victoria	non-infested fruits	Sarocladium strictum	infested fruits

What can they do?

Most species are plant pathogen but some are able to promote plant growth and promote disease resistance.

Could they be useful?

Kocuria sp., P. citronellolis & *V. victoria* are potential olive biocontrol agents.

IECPS

2020

- No significant differences among the two types of cultivar and infestation level.
- Cultivar influences 2.1% and 2.3% of the bacterial and fungal composition respectively.
- Kocuria sp., P. citronellolis & V. Victoria are found to be endophytes with potential biocontrol activities in olive tree. However future studies must be done to confirm.

This work is supported by FEDER funds through the COMPETE (Operational Programme for Competitiveness Factors) and by National funds through the FCT (Foundation for Science and Technology) within the POCI-01-0145-FEDER-031133 (MicOlives) project.

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional