1st International Electronic Conference on Plant Science

01-15 DECEMBER 2020 | ONLINE

Fungicide free management of papaya Anthracnose (*Colletotrichum gloeosporioides* Penz.) disease using combined bio-rationales and bee wax in Organic Agriculture

Niveka Srikantharajah¹, Kandiah Pakeerathan¹,* and Gunasingam Mikunthan¹,

¹Department of Agricultural Biology, Faculty of Agriculture, University of Jaffna, Ariviyal Nagar, 44000, Kilinochchi. Sri Lanka

INTRODUCTION

Papaya (Carica papaya L.): Caricaceae

- High nutritive fruit-Tropical sub tropical
- Specially rich in Vitamin C(511.2mg/100g)
- Ripen fruit contain high levels of carbohydrate (42.28%/100g, 15.5%/100g) low level of fat Leaves, unripen ,ripen fruits, latex seeds –ecconomical value
- Total energy -39kcal/100g.

Anthracnose in papaya

- Cause: Colletotrichum gleosporides
- Host range Cereals, grasses, trees, legumes, fruits, vegetables, perennial crops -Ajay Kumar, G., (2014)
- Best growth in 29-30°C, higher humid period.
- Spores in quiescent stage unfavorable condition

SYMPTOMS OF ANTHRACNOSE

Sunken, water soaked spots

Round- oval regular - irregular brownish red - black spots

IECPS **2020**

Ajay Kumar, G., (2014)

Justification for this research

- Anthracnose disease reduce
 - Fruits quality parameters
 - Economy value of the fruits
- Reduce the fungicides usage.
- Increase the self life of papaya fruits

Objectives

In-vivo analysis of botanicals coating against papaya anthracnose with wax coating effect on papaya anthracnose

MATERIALS & METHODOLOGY

IECPS **2020**

Extraction of Botanicals

Disease free fresh plants collectedand dried

Washed and surface sterilized 3% NaOCl and dried

made into powder -motor and pestle

Ethanol based solvent extraction and filtration (Muryati *et al.*, 2012)

Prepared 20% of each plant extract

Experimental setup

Treatment Number	Treatment-Set 1	Treatment-Set 2
T1	Ocimum basilicum	Ocimum basilicum + wax
T2	Ocimum tenuiforum	Ocimum tenuiforum + wax
Т3	Allium sativum	Allium sativum + wax
T4	Azadiracta indica	Azadiracta indica + wax
T 5	Lantana camara	Lantana camara + wax
T 6	Ocimum cinnamon	Ocimum cinnamon + wax
T7	Control (surface sterilized organic fruit)	Control + wax

In-vivo analysis of botanicals and Wax coating against papaya Anthracnose

Uniform color, size papaya fruits collected

Surface cleaning (3% NaOcl)

Topical application of botanical extracts (20%)

Edible wax coating (kept for 4hrs)

Inoculation of *C. gloeosporioides* (x10⁸ spores/mL)

Incubation and disease assessment

IECPS **2020**

Assessment and Calculations

Disease Incidence % =
$$\frac{\text{Number of fruits infected}}{\text{Total number of fruits examined}} \times 100 \%$$

Disease severity =
$$\frac{\text{Value of Grade } \mathbf{X} \text{ No fruits infection}}{\text{Number of fruits examined } \mathbf{X} \text{ Maximum score value}} \times 100 \%$$

Weight loss % =
$$\frac{\text{weight of fresh fruit (g)} - \text{weight of fruit after treatment}}{\text{Weight of fresh fruits (g)}} x 100 \%$$

Percentage of disease in fruits	Rating scale
0% area affected	0
0-20% area affected	1
21-400% area affected	2
41-60% area affected	3
61-80% area affected	4
80-100% area affected	5

Oniha, M. et al.,2015

Analysis pH and Total Soluble Solids (TSS)

Placed on the prism

Brix reading was recorded

IECPS **2020**

Statistical Analysis

• Data collected in the whole study was analyzed by Micrsoft Excel 2013 and SAS software (9.1 version).

• Duncan's Multiple Ranges Test (DMRT) was used to determine the least significant differences among the treatments at *P*> 0.05.

RESULTS & DISCUSSION

IECPS **2020**

Disease incidence with and without wax

Disease severity with and without wax

control

Azadiracta indica

lantana camara

Allium sativum

Ocimum sp (Kanchang kuthirai

Ocimum tenuiflorum Ocimum basilicum

control +wax

Allium sativum+wax

ocimum tenuiforum+wax

lantana camara+wax

Azadiracta indica+wax

ocimum basilium+wax

Ocimum sp+wax)

weight loss% with and without wax

-	nH after preservation		TSS after preservation	
	pH after preservation		TSS after preservation	
Botanicals	5th day	12th day	5th day	12th day
Ocimum basilicum	5.32±0.35 ^{Aa}	5.42±0.059 Adc	$10.10 \pm 0.57^{\mathrm{Bbc}}$	12.44±0.57 ^{Acb}
O. tenuiflorum	5.28±0.04 ^{Aa}	5.50±0.17 Ac	9.77 ^{Bbc}	11.48±0.170 ^{Afed}
Allium sativum	5.11±0.18 Bcd	5.339±0.29 Abc	$9.10\pm0.57^{\mathrm{Bc}}$	11.63±0.25 ^{Aced}
Azadiracta indica	5.01±0.086 Bcd	5.55±0.036 Abc	10.77^{Bbac}	12.58±0.15 ^{Ab}
Lantana camara	5.26±0.078 Ba	5.92±0.022 ^{Aa}	9.73±1.75 ^{Bbc}	12.14±0.63 ^{Acbd}
O. cinnamon	$4.83\pm0.01^{\mathrm{Bfed}}$	5.23±0.173 Ad	11.33±2.21 ^{Bba}	13.37±1.22 ^{Aa}
control	4.88±0.088 Bced	5.51±0.11 Ac	11.80±0.15 ^{Ba}	13.67±0.1 ^{Aa}
O. basilium +wax	4.822±0.002 Bfed	5.77±0.133 Aba	10.40±1.09 ^{Bbac}	10.78±0.005 ^{Afeg}
O. tenuiforum +wax	$4.97 \pm 0.061^{\mathrm{Bced}}$	5.78±0.026 Aba	9.59±0.23 ^{Bc}	10.77±0.05 ^{Afeg}
A. sativum +wax	$4.53\pm0.056~^{\mathrm{Bg}}$	5.79±0.26 Aba	$10.103 \pm 0.65^{\mathrm{Bbc}}$	11.51±0.22 ^{Afed}
A. indica +wax	5.02±0.009 Bcd	5.84±0.0569 Aa	9.59±0.24 ^{Bc}	11.85±0.085 ^{Acbd}
Lantana camara +wax	4.71±0.076 Bf	5.44±0.0152 Adc	9.63 ± 0.10^{Bc}	10.61±0.33 Acbd
O. cinnamon +wax	4.80±0.072 Bfed	5.40±0.168 Adc	9.51 ± 0.42^{Bc}	10.53±0.35 ^{Ag}
Control +wax	4.36±0.02 Bh	5.77±0.55 Aba	10.29±0.25 ^{Bc}	11.55±0.69 ^{Afed}
				IECPS 2020

Conclusions

• Botanicals plays a role as fungicides ,*Ocimum basilicum*. *Ocimum tenuiforum* can be used as natural fungicides for papaya anthracnose.

• Wax coating increase the self life of papya, but it reduce the ripening process.

Acknowledgments

Thank you