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Abstract: Bayes’ Theorem represents a mathematical formalization of the common sense. What we1

know about the world today is what we knew yesterday plus what the data told us. The lack of2

understanding of this concept is the source of many errors and wrong judgements in the current3

COVID-19 pandemic. In this contribution, we show how to use the framework of Bayesian inference4

to produce a reasonable estimate of seroprevalence from studies that use a single binary test. Bayes’5

Theorem sometimes produces results that seem counter-intuitive at first sight. It is important to6

realize that the reality may be different from its image represented by test results. The extent to which7

these two worlds differ depends on the performance of the test (i.e. its sensitivity and specificity),8

and the prevalence of the tested condition.9
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1. Introduction11

In the age of the coronavirus, various testing has become enormously widespread. Unfortunately,12

what has not become widespread is the understanding of the test results. The most common PCR test13

is used for the detection of the virus (more precisely its particular fragments) in a sample collected by14

a nasopharyngeal swab. The number of PCR positive cases can be used to assess the Case Fatality Rate15

(CFR) of the infection. CFR is the proportion of COVID-19 deaths in the diagnosed (i.e. PCR positive)16

population. However, CFR depends heavily on the testing strategy – any infection may reach the CFR17

of 100% if only the deceased are tested. Thus, it is more sensible to estimate the Infection Fatality Rate18

(IFR) which is the proportion of COVID-19 deaths in the infected population, regardless whether the19

infection was detected or not. The IFR is always lower than CFR and it does not depend on the testing20

strategy. However, apart from the virus itself, IFR also depends on the characteristics of the population,21

state of health care, etc. To estimate the IFR, one must infer what proportion of the population has22

already met the virus.23

One option to find the proportion of so far infected people is to test for the presence of antibodies24

against the coronavirus in a representative sample of the population. Many seroprevalence studies25

have been performed and their results helped to estimate the IFR of COVID-19, e.g. [1], [2], [3]. The26

meta-study by Ioannides [4] combined 61 larger sero-prevalence studies and reported the median IFR27
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of 0.23%. In people under 70 years, the median IFR reached 0.05%. Both the numbers are likely to be28

overestimated because an unknown proportion of population defeats the virus on the level of cellular29

immunity (and probably even become immune) without producing antibodies at all [5]. This seems to30

be the case especially for children [6] .31

Despite the fundamental importance of various forms of testing, not enough attention has been32

paid to the correct interpretation of the test results. In this paper, we want to explain this issue in33

three successive steps of an increasing level of complexity. We use the example of antibody tests here,34

but the same logic should be used for any test, the results of which are converted to a binary answer35

(positive–negative). This applies to all antibody tests (laboratory or rapid tests), all PCR tests (full36

RT-qPCR, antigen testing, etc.), and many more coronavirus unrelated medical tests, or even health37

unrelated tests (such as AB testing [7]).38

2. Antibody primer39

Some explanation of the mechanism of antibodies testing is needed. We use the example of the40

standard Enzyme-Linked Immunosorbent Assay (ELISA). This is a semiquantitative method which41

measures the amount of SARS-CoV-2 antibodies in a sample by detecting a color change of the sample42

resulting from a reaction. The color change is quantified by the optical density of the sample. The43

optical density is then divided by the optical density of a calibration sample (provided in each kit44

by the manufacturer) which contains a borderline concentration of the antibodies. The sample is45

considered positive, if the resulting Optical Density Ratio (OD Ratio) exceeds a threshold set by the46

manufacturer (1.1 in the case of Euroimmun ELISA kits) and negative, if the OD Ratio falls below a47

threshold (0.8 in the case of Euroimmun ELISA kits). OD Ratio values between the two thresholds are48

deemed inconclusive. ELISA assays are usually performed in batches of 96-well plates. Each plate49

contains one or two calibration samples and a few positive and negative controls.50

There are several types of antibodies, each with a specific role in fighting the disease and thus51

each with specific dynamics. The most commonly measured antibodies are immunoglobulins A (IgA)52

and immunoglobulins G (IgG). The production of IgA antibodies starts 1–2 weeks from the infection53

and they last for at least several weeks. IgG are produced somewhat later but usually last for several54

months after the infection. There is considerable debate about the protective role of the antibodies55

and the possibility of a reinfection [8], [9], [10]. It is probable that some (possibly most) of reported56

reinfections are due to the false positivity or false negativity of one of the PCR tests. This provides57

further motivation for thinking clearly about the test results.58

3. A binary test primer59

Each test with a binary outcome has a certain accuracy which is never perfect. Let us fix ideas by60

considering a single test with a binary outcome (positive or negative) for the presence of a specific61

antibody. In each tested subject, the antibody is either present (A+) or absent (A−), which we do not62

know. For each subject, the test may come out either positive (T+) or negative (T−), which is the63

observed result. The performance of the test may be significantly different for the A+ subjects and64

for the A− subjects. Therefore, two numbers are needed to characterize the performance of any binary65

test. The sensitivity of the test is the accuracy on the A+ population, i.e. the probability that the test66

comes out positive provided the antibodies are, in fact, present. In terms of conditional probability,67

we can write sens = p(T + |A+). On the other hand, the accuracy on the A− population is called68

the specificity of the test. The specificity of the test is the probability that the test comes out negative69

provided the antibodies are absent. Thus, spec = p(T − |A−). The prevalence of antibodies in the70

population is denoted by prev. It can be interpreted as the probability that the antibodies are present in71

a randomly chosen subject, i.e. prev = p(A+).72

In practice, we test a subject and observe the test result, say T+. Since neither sens nor spec are73

perfect, a positive test result does not necessarily imply that the antibodies are presents (it may be a74
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false positive). Thus, we want to make inference about the probability that the antibodies are present,75

provided the test came out positive. We use the Bayes’ Theorem to obtain76

p(A + |T+) =
p(T + |A+)p(A+)

p(T + |A+)p(A+) + p(T + |A−)p(A−) =

=
sens× prev

sens× prev + (1− spec)× (1− prev)
.

It is important to realize that the posterior probability p(A + |T+), i.e. the probability that a77

positively tested subject indeed has the antibodies, depends not only on the parameters of the test (sens78

and spec) but also on the prevalence. For example, the Euroimmun ELISA test for IgA anti-SARS-CoV-279

antibodies has a declared sensitivity of 98.6% and specificity of 92.0%. If the prevalence is assumed to80

be around 1% (as it was the case at the very beginning of the pandemic), a positive test result yields the81

posterior probability p(A + |T+) of approximately 11%. Thus, about 9 out of 10 positive test results82

are false positives! If the prevalence rises to 10% (a sensible figure after the first wave of the pandemic),83

the posterior p(A + |T+) increases to about 58%. Once prevalence reaches 30% (only the hardest hit84

regions may have reached this figure), the posterior grows further to 85%.85

This example represents the step zero in understanding seroprevalence studies and suggests a86

careful way of interpreting binary test results is needed: A positive test does not necessarily imply87

that antibodies are present in the tested subject, it merely increases the probability that it is so. The88

posterior probability is given by the Bayes’ Theorem and it depends on the sensitivity and specificity89

of the test but also on the prevalence of the antibodies.90

4. A single test study91

In a typical seroprevalence study, the question is how widespread a certain antibody is in a given
population. Thus, we want to make inference on the prevalence. A test of known parameters is used
and a random sample of N subjects is drawn from the population. The study yields data which consist
of K positive test results and N − K negative test results. The Bayes’ Theorem – this time written in
terms of probability densities [11] – states that

p(prev|data) ∝ p(data|prev)p(prev). (1)

The proportional sign (∝) means that the posterior density p(prev|data) must be normalized to a unit92

area. The posterior density represents a degree of belief about the prevalence, taking into account all93

the available data. Some assumption must be made about the prevalence that we want to estimate.94

This is the first principle of Bayesian inference – you cannot make inference without assumptions. It is95

sensible to model the prior density p(prev) as a beta distribution centered around our prior beliefs.96

For example, if the study is performed at the very beginning of the pandemic, the prevalence is almost97

certainly very low, and so p(prev) = beta(1, 10) may be a sensible prior (see Figure 1).98
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Figure 1. The simulated results of a seroprevalence study with N = 1000 subjects, out of whom
K = 200 came out positive. A single test with the parameters sens = 0.7 and spec = 0.9 was used. The
dashed line represents the prior and the thick line of the same color represents the posterior density.
Notice that the prior has a negligible effect on the posterior, if the number of subjects is sufficiently
high.

Now let us evaluate the likelihood, i.e. p(data|prev). The likelihood is interpreted as the probability
of obtaining the observed data if the true prevalence was known and equal to prev. This is a rather
simple calculation because

p(data|prev) ∝ [p(T + |prev)]K[p(T − |prev)]N−K.

Both the terms are easy to evaluate:99

p(T + |prev) = p(T + |A+, prev)p(A + |prev) + p(T + |A−, prev)p(A− |prev) =

= p(T + |A+)p(A + |prev) + p(T + |A−)p(A− |prev) =

= sens× prev + (1− spec)× (1− prev).

Analogously,100

p(T − |prev) = p(T − |A+, prev)p(A + |prev) + p(T − |A−, prev)p(A− |prev) =

= p(T − |A+)p(A + |prev) + p(T − |A−)p(A− |prev) =

= (1− sens)× prev + spec× (1− prev).

Combining all the above, the likelihood becomes

p(data|prev) = [sens× prev + (1− spec)× (1− prev)]K[(1− sens)× prev + spec× (1− prev)]N−K.

This is an explicit expression that can directly be evaluated. In practice, the logarithm of the likelihood101

is evaluated to avoid the problem of multiplying small numbers. Figure 1 shows the results of an102

artificial example with N = 1000 and K = 200 for a test with the parameters sens = 0.7 and spec = 0.9.103

Now consider the realistic setting of sens = 0.986 and spec = 0.920 for the anti-SARS-CoV-2 IgA104

ELISA assay. Let us assume that in a sample of N = 1000 subjects, we obtained K = 100 positive105

results. A careless estimate of the seroprevalence would yield prev ∼ K/N = 10%. However, the106



Version March 9, 2021 submitted to Journal Not Specified 5 of 6

correct computation (with the beta(1, 10) prior) reveals that the mean of the posterior is 2.2% – an107

almost five times lower number. The probability that the true prevalence exceeds 5% is less than108

0.01, and the probability that the true prevalence exceeds 9% is 10−8, i.e. the careless seroprevalence109

estimate K/N is all but impossible! This is consistent with the observation of the previous section that110

in the environment of low prevalence, most of the positive test results are false positives. This shows111

that seroprevalence studies must be evaluated correctly because the careless estimate of the prevalence112

by the fraction of positive test results (prev ∼ K/N) is usually completely meaningless.113

5. Conclusions114

We have shown how to use the framework of Bayesian inference to produce reasonable estimates115

of seroprevalence from studies that use a single binary test. Although the Bayes’ Theorem represents116

only a formalization of the common sense, it sometimes produces results that seem counter-intuitive117

at first sight. It is important to realize that the reality may be different from its image represented by118

test results. The extent to which these two worlds differ depends on the performance of the test (i.e. its119

sensitivity and specificity), and the prevalence of the tested condition. The Bayes’ Theorem provides a120

logically consistent framework for combining our prior beliefs with all the information obtained from121

the data.122
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