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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused 
enormous losses worldwide since its emergence in 2019. We aimed to further understand how tem-
perature and precipitation affect distribution of the virus, to facilitate taking preventive actions 
against the disease in a timely manner under varying climatic conditions. In this study, we used the 
MaxEnt model and R software to investigate temperature and precipitation factors that affect the 
fitness of SARS-CoV-2. Our results showed that low temperatures (approximately 0–17.5°C) and 
low precipitation (approximately 30 mm) greatly influence survival of the virus. However, the out-
put value of the response curve was close to 1 with temperatures between 31°C and 37°C and 
monthly average precipitation 200 mm, which indicates that a high risk of SARS-CoV-2 transmis-
sion may also exist under these environmental conditions. SARS-CoV-2 can easily survive under 
conditions of low temperature and low precipitation; however, the virus also presents a high risk at 
31–37°C and monthly precipitation of 200 mm. The results of this study provide a theoretical basis 
for predicting the spread of SARS-CoV-2.  

Keywords: Severe acute respiratory syndrome coronavirus 2; Temperature; Precipitation; MaxEnt 
model; Akaike information criterion; True skill statistic. 
 

1. Introduction 
Health and surveillance systems worldwide have faced unprecedented challenges 

since the emergence of the coronavirus disease 2019 (COVID-19) pandemic at the end of 
2019 [1] which continues to cause tremendous damage and loss to the international com-
munity [2]. At present, the source of the causative agent, severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), is not completely clear. It is generally believed that 
the virus spread from bats [3], pangolins [4] or other wild animals to humans and has 
subsequently spread among humans. According to recent clinical case reports, pet cats 
[5], tigers [6] and African lions [7] have been diagnosed with SARS-CoV-2 infection, mak-
ing this pandemic is a huge challenge for the survival of humans and other animals. 

SARS-CoV-2 can be spread through droplets when an infected patient coughs or 
sneezes, among other possible routes [8]. Common clinical manifestations of SARS-CoV-
2 infection include fever, dry cough, breathing difficulties (dyspnea), headache, severe 
respiratory illness, and pneumonia [3]. Serious illness can lead to progressive respiratory 
failure and death owing to alveolar damage [9](Hui et al., 2020). Transmission electron 
cryomicroscopy has revealed that the SARS-CoV-2 S protein binds angiotensin-convert-
ing enzyme 2 (ACE2) with higher affinity than does its predecessor, SARS-CoV [10]. 
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Therefore, SARS-CoV-2 is more harmful to humans than SARS-CoV. Changes in global 
climate may have an important role in outbreaks of infectious diseases [11,12,13]. Previous 
research of malaria, dengue, chikungunya, Murray Valley encephalitis, Ross River, Rift 
Valley fever viruses, influenza, Varicella, hantavirus, and hand, foot and mouth disease 
(HFMD) have shown that extreme climate conditions are likely to affect the occurrence 
and spread of these diseases [12,14-23]. Research shows that temperature and precipita-
tion climate variables have a significant influence on the occurrence of infectious disease 
epidemics [24] . Therefore, in the study of SARS-CoV-2, some researchers have analyzed 
the relationship of temperature and precipitation with the virus by calculating the R value 
of Effective Reproductive Numbers [25] and Pearson's correlation analysis [26] . 

The MaxEnt model adopts ecological niche modeling based on the maximum en-
tropy theory first proposed by Phillips in 2004 [27]. This model can be used to analyze the 
niche needs of species and predict their potential geographic distribution using present or 
absent information of the target species and environmental data. In recent years, this 
model has been widely applied in the prediction of both human and animal infectious 
diseases and analysis of environmental factors in infectious diseases [28-32]. 

SARS-CoV-2 research is mainly focused on etiology and virus infectivity, clinical 
drug screening, and detection and traceability, among other aspects [9, 33-36]. Research is 
relatively lacking regarding important environmental variables and fitness analysis re-
lated to SARS-CoV-2. The arrival of the summer and autumn seasons may lead to resur-
gence in COVID-19 outbreaks. In this article, we aimed to analyze and discuss extreme 
values of temperature and precipitation that could affect SARS-CoV-2 transmission, using 
the MaxEnt model and R software package, based on the niche theory of pathogens. Our 
findings can provide a theoretical basis for future measures to prevent the spread of SARS-
CoV-2 in regions around the world. 

2. Materials and Methods  
2.1. Data sources and processing 

The geographic location of our study area was the site of the original outbreak of 
SARS-CoV-2 in Wuhan, China (113°41′–115°05′E, 29°58′–31°22′N). We minimized the spa-
tial auto-correlation between geographic locations [28], then extracted geographic loca-
tions within a 10-km range. At last, we got 289 geographic sites. We selected 19 biomete-
orological factors (bio-1 to bio-19) representing extreme values of temperature and pre-
cipitation, as environmental variables [32, 37], to further analyze the relationship of cli-
mate factors and risk of virus survival. 

2.2. Model construction and evaluation 
The model with the smallest corrected Akaike information criterion (AICc) value was 

calculated using the R package "ENMeval" (Cobos et al., 2019a, Muscarella et al., 2014). 
The AIC value (or ΔAICc) was calculated using the "lambdas" file in the MaxEnt model. 
Finally, the AIC value (or ΔAICc) was used to measure the complexity of the model with 
different combinations of MaxEnt (Cobos et al., 2019b). The MaxEnt model specifies the 
feature classes allowed (L = linear, Q = quadratic, H = hinge, P = product and T = thresh-
old). The feature combinations (FCs) were set as L, H, LQ, LQH, LQPH, and LQPHT; the 
regularization multiplier (RM) was set at 0.5–4 with an interval of 0.5. The test and training 
sets were categorized as 25% and 75% of all data. We performed logistic regression with 
10 replicates. 

In this study, we used the area under the receiver operating characteristic (ROC) 
curve (AUC) value and average standard deviation to measure the accuracy of the model; 
we also used the R package "PresenceAbsence" to calculate the sensitivity and specificity 
of the model. PresenceAbsence was used to calculate the true skill statistic (TSS) of the 
predicted values of sample points and background points, to measure the sensitivity and 
specificity of the model.    
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3. Results 
3.1. Model selection results 

The best model was selected, based on the AIC using ENMeval (Figure. 1 and Table 
S2). The FC was LQ and RM was 0.5. 

 
Figure 1. Default settings (LQHP) and settings (LQ) that yielded the minimum corrected Aikake information criterion 
(AICc) are indicated with arrows. Legends denote feature classes allowed (L = linear, Q = quadratic, H = hinge, P = product 
and T = threshold). Note that for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), AICc-selected settings 
(based on all localities) resulted in substantially lower omission rates than were achieved using the default settings. 

3.2. Response curve 
3.2.1. Temperature variable 
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Figure 2. Response curves of biometeorological factors representing temperature. 

In Figure. 2, peak response curves appear under the following conditions: when the 
annual mean temperature (bio-01) is approximately 17.5℃, when the maximum temper-
ature of the warmest month (bio-05) is approximately 37℃, when the minimum temper-
ature of the coldest month (bio-06) is approximately 0℃, when the annual temperature 
range (bio-07) is approximately 32.5℃, when the mean temperature of the wettest quarter 
(bio-08) is approximately 30℃, when the mean temperature of the driest quarter (bio-09) 
is approximately 7℃, when the mean temperature of the warmest quarter (bio-10) is ap-



The 3rd International Electronic Conference on Environmental Research and Public Health 5 of 10 
 

 

proximately 31.5℃, or when the mean temperature of the coldest quarter (bio-11) is ap-
proximately 5℃. In other words, the risk of a SARS-CoV-2 outbreak is highest under these 
temperature conditions. In addition, the peak logistic output values of bio-05 and bio-10 
were higher than those of the other temperature variables (approximately equal to 0.6). 

3.2.2. Precipitation variable 

 
Figure 3. Response curve of biometeorological factors representing precipitation. 
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In Figure. 3, peak response curves appear with annual precipitation (bio-12) approx-
imately 1250 mm, precipitation in the wettest month (bio-13) approximately 210 mm, pre-
cipitation in the driest month (bio-14) approximately 30 mm, precipitation in the wettest 
quarter (bio-16) approximately 600 mm, precipitation in the driest quarter (bio-17) ap-
proximately 120 mm, precipitation in the warmest quarter (bio-18) approximately 600 
mm, and precipitation in the coldest quarter (bio-19) approximately 120 mm. The risk of 
a SARS-CoV-2 outbreak is highest under these precipitation conditions. 

3.3. Jackknife test of variable importance 
Figure 4 shows that the environmental variable with the highest gain when used in 

isolation was bio-19, which appears to have the most useful information by itself. The 
environmental variable with the largest decrease in gain when omitted is bio-06, which 
appears to have the most information that is not present in the other variables.  

 
Figure 4. Jackknife test of variable importance. 

3.4. Model validation 



The 3rd International Electronic Conference on Environmental Research and Public Health 7 of 10 
 

 

 
Figure 5. (a) Variations in the area under the receiver operating characteristic curve (AUC) for training localities (AUC 
training) and AUC for test localities (AUC test); (b) Standard deviation with 95% confidence intervals. 

In Figure. 5, all AUC values were greater than 0.9; the mean AUCTest was 0.9866, and 
the mean AUCTrain was 0.9872. With 95% confidence intervals, the average standard devi-
ation was 0.0015. In addition, the logistic output results of background data of the MaxEnt 
model were calculated using the PresenceAbsence package. We subsequently obtained a 
maximum sensitivity (Max-Sensitivity) of 0.989619, maximum specificity (Max-Specific-
ity) 0.9719, TSS value 0.961519, and AUC value 0.99758; the AUC standard deviation 
(AUC.sd) was 0.000455. This prediction model shows very high stability, and the results 
are scientific and credible.  

4. Discussion 
SARS-CoV-2 is a novel coronavirus strain that has never been found in humans until 

now. Individuals with SARS-CoV-2 infection have symptoms such as fever as well as res-
piratory symptoms including cough, shortness of breath, and difficulty breathing. In more 
severe cases, patients can develop pneumonia, SARS, kidney failure, and the infection can 
even lead to death. At present, there is no specific treatment for COVID-19, which has 
become the most challenging infectious disease worldwide because of its rapid spread 
and high variability. Temperature and precipitation are two important environmental fac-
tors affecting epidemics [24]. SARS-CoV-2 emerged during the winter, so it has been un-
clear how seasonal changes in temperature and precipitation would affect spread of the 
virus. 

In this study, we explored this problem using a MaxEnt model based on the niche 
theory. We considered the effect of model complexity in the calculation results. The ∆AIC 
value under different combination models was calculated with the ENMeval software 
package to select the most suitable MaxEnt model for SARS-CoV-2 research [38,39. The 
mean AUC obtained after calculating the selected model was higher than 0.95 (Fig. 5), and 
the Max-sensitivity, Max-specificity, and TSS value of the model obtained using "Pres-
enceAbsence" were close to 1. Previous researchers have mainly used the missing rate 
curve to compare and evaluate the MaxEnt model X, or a partial ROC scheme to test the 
local prediction ability and transfer ability of the model [40]. We used the R package "Pres-
enceAbsence" to calculate model sensitivity and specificity. The range is −1 to 1, with 1 
indicating that the experimental result is the best and 0 or less that the performance of the 
model is very poor [41,42,43].  

From the previous relevant literature, the TSS value can be used to avoid evaluation 
bias caused by the positive rate of the sample, and it is a good value for measuring the 
accuracy of the model [41,42,43]. Therefore, the results of this experiment have a high de-
gree of reliability. 

The jackknife result graph is mainly used to measure the effect of variable factors on 
the fitness of the target species. The longer the blue band, the greater the impact on the 
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fitness of the target species. When the green band is shorter than the red band, the variable 
contains more biological information than other variables [44]. In Fig. 4, the lowest tem-
perature in the coldest month (bio-06) showed significant importance. The significant re-
duction in the gain value of bio-06 shows that the factor has special biological information 
that other variables do not. In addition, bio-06 also showed a very high contribution rate 
from the perspective of the contribution of each factor to the model (Table S3). Figure 4 
shows that precipitation had a stronger influence than temperature, from the length of the 
blue band for SARS-CoV-2. The coldest season precipitation (bio-19) is particularly prom-
inent. Several other variable factors (bio-14, bio-17) representing low precipitation showed 
much greater importance than high precipitation factors (bio-13, bio-16). Therefore, com-
bining these points, we speculate that the virus is more suited to conditions of low tem-
perature (approximately 0–17.5℃, bio-01, bio-06) and low precipitation. 

From the experimental results, we postulate that SARS-CoV-2 outbreaks are more 
likely under conditions of low temperature and low precipitation. Wang et al. proposed 
that high temperatures and high precipitation can reduce the spread of SARS-CoV-2, so 
our research results are basically consistent with that study. However, from the response 
curve results of the investigated factors (Fig. 2b, 2g), the output value is higher than that 
of other variables when the temperature is 37℃ (bio-05) and 31.5℃ (bio-10) (logistic out-
put >0.65 ). The logistic output is close to 1, especially when the temperature is 31.5℃ (bio-
10), so we think that the risk of infection is very high under this temperature condition. 
At the same time, from results of the response curves (Fig. 3b, 3e, 3g), the output values 
of the bio-13, bio-16, and bio-18 peaks occurred when the average monthly precipitation 
was approximately 200 mm. Therefore, even if the virus is more suited to survive under 
low temperatures and sparse precipitation, special vigilance is needed to detect the peak 
period of disease during the summer and autumn, especially around 31–37℃ and when 
the average monthly precipitation is approximately 200 mm. This is consistent with pre-
vious research results [26]. 

5. Conclusions 
In this experiment, we sought to identify an optimal model to predict SARS-CoV-2 

survival under varying climate conditions, and we evaluated the sensitivity and specific-
ity of the selected model; our results showed extremely high reliability. From the experi-
mental results, SARS-CoV-2 is most likely to survive under environmental conditions of 
low temperature and low precipitation. At the same time, the possibility of increased virus 
survival risk with high temperatures (above 30℃) and high precipitation (approximately 
200 mm) should not be underestimated. In general, this study provides a basis for ongoing 
research into suitable climate conditions for the spread of SARS-CoV-2. 

This section is not mandatory, but may be added if there are patents resulting from 
the work reported in this manuscript. 
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