The 3rd International Electronic Conference on Environmental Research and Public Health —Public Health Issues in the Context of the COVID-19 Pandemic

Ecologic Study of Influenza Vaccination Uptake and COVID-19 Death Rate in New York City

Asher Moreland, MPH; Christina Gillezeau, MPH; Adriana Eugene, MS; Naomi Alpert, MS and Emanuela Taioli, MD, PhD

Icahn School of Medicine at **Mount** Sinai

Introduction

- February 29-December 2, 2020: over 360,000 COVID-19 cases and 24,000 deaths in New York City
- Distribution of COVID-19 vaccines could take months for many Americans
- Other measures of mitigation are necessary
- Influenza vaccination has been hypothesized to mitigate COVID-19 severity in elderly populations
- Socioeconomic confounders associated with influenza vaccination uptake and COVID-19 severity have not been considered

Study Aim

 Assess the area-level relationship between cumulative death rate for COVID-19 and historic influenza vaccination uptake in New York City, adjusted for possible confounders of COVID-19 severity, as defined by the Centers for Disease Control and Prevention (CDC)

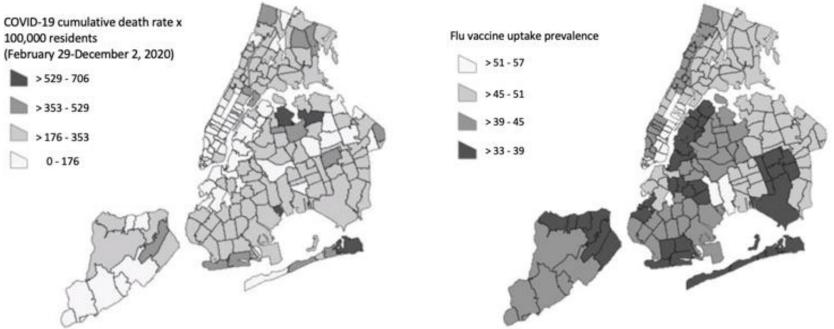
Methods

- Modified zip code tabulation area (MODZCTA) level cumulative COVID-19 death rates February 29, 2020-December 2, 2020 from the NYC Department of Health (DOH) Coronavirus repository
- United Hospital Fund (UHF) level age-adjusted prevalence (%) of self-reported flu vaccination, diabetes, asthma, $BMI \ge 30 \text{ kg/m}^2$, and hypertension from the 2017 Community Health Survey (CHS) via the Department of Health and Mental Hygiene's EpiQuery tool
- Percent of residents who were white, Hispanic, and ≥65 years old in each ZCTA from the American Community Survey (ACS) 2018 5-year estimates
- Data for CHS and ACS indicators were converted to MODZCTA using crosswalks provided by NYC DOH
- Multilinear analysis to assess the association of COVID-19 death by MODZCTA by prevalence of flu vaccination in 2017

Multiple Linear Relationship between COVID-19 Death Rate and Flu Vaccination Prevalence in New York City Residents

	COVID-19 Cumulative Death Rate per 100,000 residents [#]						
Variable (%)	Median (IQR)	Q1	Q3	Coefficients	р	95% Confidence	
				В		Lower	Upper
Flu Vaccination Prevalence^	44 (7.2)	40.7	47.9	-5.17	< 0.0001	-7.4	-2.93
Diabetes Prevalence^	11.2 (6.0)	9	15	3.86	0.1736	-1.72	9.44
Asthma Prevalence^	13.4 (7.2)	10	17.2	1.28	0.4169	-1.82	4.38
BMI <u>> 30 kg/m² Prevalence</u> ^	23.3 (11.3)	19.1	30.4	0.89	0.6007	-2.45	4.22
Hypertension Prevalence^	28.2 (9.0)	23.5	32.5	-2.05	0.3635	-6.5	2.39
Proportion White Residents*	46.4 (45.2)	22.62	67.87	-1.71	< 0.0001	-2.42	-1
Proportion Hispanic Residents*	18.9 (26.2)	10.91	37.12	1.58	0.0002	0.76	2.4
Proportion Residents <a>65 Years *	13.6 (6.0)	11.11	17.07	11.98	< 0.0001	9.1	14.86

[#] New York City Department of Health. NYC Coronavirus disease 2019 (COVID-19) data. <u>https://github.com/nychealth/coronavirus-data</u>. Accessed December 2, 2020


^ Department of Health and Mental Hygiene NYCDoHaMH EpiQuery. https://nyc.gov/health/epiquery. Accessed November 12, 2020

* Bureau USC. American Community Survey. 2018 American Community Survey 5-Year estimates. <u>https://data.census.gov/cedsci/</u>. Accessed April 28, 2020

Results

- In NYC in 2017, 44% of residents reported receiving a flu vaccine, 13% having asthma, 25% a $BMI \ge 30 \text{ kg/m}^2$, and 28% hypertension. The population was 43% white, 29% Hispanic, and 15% >65 years.
- After adjusting for potential confounders, predictors accounted for 49% of the variability in the COVID-19 death rate (p < 0.0001).
- For every one-unit increase in flu vaccination uptake for each zip code area, the rate of COVID-19 deaths decreased by 5.17 per 100,000 residents (p < 0.0001).
- The proportion of white residents ($B_{adj} = -1.710$, p < 0.0001) was significantly inversely associated with mortality.
- Older age ($B_{adj} = 11.980$, p < 0.0001) and the proportion of Hispanic residents were positively associated with COVID-19 mortality ($B_{adj} = 1.580$, p = 0.0002).

Distribution of COVID-19 Mortality Rates and of Flu Vaccination Uptake Prevalence in NYC

Distribution of the COVID-19 cumulative death rate per 100,000 residents Feb. 29-Dec. 2, 2020 (left) and age-adjusted prevalence (%) of self-reported flu vaccination (right) from UHF 2017 CHS NYC Modified Zip Code Tabulation Areas.

- Neighborhoods with a higher prevalence of influenza vaccination had lower rates of COVID-19 mortality, even after adjustment for racial and ethnic makeup, and distribution of age and health risk factors for severe COVID-19.
- This analysis is the first to consider these confounders in a US based database.
- These findings suggest that influenza vaccination may contribute to lower COVID-19 mortality, and could be an effective population-wide prevention and mitigation measure, with special emphasis on vaccinating seniors.

Conclusions

- Influenza vaccination should be actively promoted, as it could be an additional effective public health measure.
- Future research should explore the relationship between influenza vaccination uptake and COVID-19 mortality at the individual level.

Acknowledgements Emanuela Taioli, MD, PhD Adriana Eugene, MS Christina Gillezeau, MPH Naomi Alpert, MS

Financial Disclosure: This research received no external funding. **Conflicts of Interest:** The authors declare no conflict of interest.