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Abstract: Snake venom Cysteine-Rich Secretory Proteins (svCRiSPs) are important components in
the venom of many snake species. Little is known about the contribution that they make to the local
pathophysiology of snakebite. We investigated the role of svCRiSPs from the most medically signif-
icant species of North American snakes (Crotalus atrox, C. adamanteus, C. scutulatus scutulatus, C.
horridus, and Agkistrodon piscivorus), focusing on the cellular and molecular mechanisms. We eval-
uated the biological activities of svCRiSPs (Catrox-CRiSP, Cada-CRiSP, Css-CRiSP, Chor-CRiSP,
and App-CRiSP) by using both in vitro assays on human dermal lymphatic (HDLECs) and blood
(HDBECs) endothelial cells permeability and in vivo Miles assay. Of all the CRiSPs tested, Css-
CRiSP and App-CRiSP displayed the highest increase in permeability compared to other crotaline
CRiSPs. We initially screened the changes in protein expression and phosphorylation in HDLECs
and HDBECs after treatment with Css-CRiSP and App-CRiSP using reverse phase protein arrays
(RPPA). Studies are ongoing for identifying the key signaling that are involved in endothelial per-
meability after treatment with App-CRiSP and Css-CRiSP.

Keywords: signaling pathway; reverse phase protein arrays (RPPA); snake venom cysteine-rich se-
cretory proteins (svCRiSPs); endothelial permeability; North American snakes

Key Contribution: Knowledge gained from these studies provides insights into the molecular
mechanisms that underlie the effects of svCRiSPs on vascular function and contributes to a new
level of understanding of the pathophysiology of snakebite

1. Introduction

Snake venoms are composed of complex mixtures of biological molecules. Among
them, snake venom cysteine-rich secretory proteins (svCRiSPs) are ubiquitous compo-
nents in the venom of many species of snakes [1,2], including Viperidae (Viperinae and
Crotalinae) and Elapidae (Elapinae and Hydrophiinae) [3]. However, little is known of
about the contribution that they make to the local pathophysiology of snakebite. Much of
the information that has been garnered on the structure and biological activity of
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svCRiSPs has been derived from studies of Asian and Australian snakes (due in part to
the concentration of snake venom research in these geographic areas). Much less is known
of the biological activity of svCRiSPs present in the North American snakes’ venom, es-
pecially rattlesnakes (Genus Crofalus) and cottonmouths (Genus Agkistrodon). Several of
these svCRiSPs have been shown to block the activity of L-type Ca?* and/or K* channels
[4,5]. Two svCRiSPs, ES-CRIiSP, isolated from an Asian pit viper, and natrin, isolated from
cobra venom, have been shown to affect vascular endothelial cell activity [6,7]. Natrin
from Naja atra has been shown to produce acute activation of MAP kinase signaling in
human umbilical vein endothelial cells (HUVEC) [6]. ES-CRiSP from Echis carinatus so-
chureki, on the other hand, has not been reported to have an effect on MAP kinase signal-
ing on its own but can block VEGF-dependent activation of Erk1/2 in HUVEC cells [7].
However, the mechanism of actions and molecular targets of most svCRiSPs remain un-
clear.

We have recently reported that Hellerin, a svCRiSP that we have isolated from the
venom of the Southern Pacific Rattlesnake, C. oreganus helleri, increases vascular permea-
bility in vivo and in vitro [8]. This study’s objective was to investigate the biological activ-
ities of svCRiSPs isolated from the venoms of the most medically significant species of
North American snakes. This study also aims to determine key singling pathways in-
duced by svCRiSPs on human endothelial cells using reverse-phase protein microarray
analysis (RPPA) analysis.

2. Materials and Methods
2.1. Snake and Venom Collection

The venoms were obtained from the National Natural Toxins Research Center
(NNTRC), Texas A&M University-Kingsville, Kingsville, TX, USA.

2.2. Purification of CRiSPs

svCRiSPs were isolated from crude venoms using two chromatographic steps consist
of reverse phase C18 (Higgins Analytical PROTO 300 C18, 250 x 4.6 mm, 5 pm column,
Higgins Analytical, Inc., Mountain View, CA) and cation-exchange (Waters Protein-Pak™
SP 5PW, 7.5 x 75 mm column, Waters Corp., Milford, MA) as previously described [8].

2.3. SDS-PAGE Electrophoresis and N-Terminal Sequencing

Purified CRiSPs were applied to NuPAGE® Novex 4-12% (w/v) Bis-Tris SDS-PAGE
gels (Invitrogen™, Carlsbad, CA, USA) using an XCell SureLock™ system (Invitrogen™,
Carlsbad, CA, USA). For the N-terminal sequencing, purified CRiSPs were transferred
from an SDS-PAGE gel onto a PVDF membrane and stained with Coomassie brilliant blue
R-250. The sample membrane was processed for N-terminal amino acid sequencing using
Edman degradation method on a PPSQ-33B protein sequencer (SHIMADZU, Kyoto, Ja-
pan) following the manufacturer’s instructions.

2.4. LC-MS/MS Analysis and Proteomics Data Processing

Venom protein identification and sequence analysis of CRiSPs (Css-CRiSP from C. s.
scutulatus, Catrox-CRiSP from C. atrox, Cada-CRiSP from C. adamanteus, Chor-CRiSP from
C. horridus, and App-CRiSP from A. p. piscivorus) were performed by LC-MS/MS mass
spectrometry following the protocol as described by Suntravat et al. [8]. N-terminal amino
acid sequences and sequences generated by MS were compared to the sequences in the
GenBank database using BLASTX programs. Multiple alignments of the complete amino
acid sequences were performed with a ClustalW program.

2.5. Effect of CRiSPs on Vascular Permeability and Endothelial Cell Function

Assays were performed as described previously [8]. Values are presented as fold in-
crease with respect to negative control.
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2.6. Reverse Phase Protein Array Analysis

RPPA analyses were performed at the Functional Proteomic RPPA Core Facility at
MD Anderson Cancer Center (Houston, USA) as described at https://www.mdander-
son.org/research/research-resources/core-facilities/functional-proteomics-rppa-core/edu-
cation-and-references.html. Heatmaps were generated using XLSTAT software version
2020.4.1. Proteins were ordered by the rank sum of the normalized values.

3. Results and Discussion
3.1. Proteomic Analysis and Purification of CRiSPs

Crotaline venoms are a rich and untapped resource for the discovery of new
svCRiSPs that are useful in probing the cellular and molecular mechanisms involved in
the effects of this family of toxins and on both lymphatic and blood vascular endothelial
cell biology. To evaluate the venom composition of the C. atrox, C. adamanteus, C. s. scutu-
latus, C. horridus, and A. p. piscivorus used in this study, we analyzed the proteome of the
venom using LC-MS/MS analysis. CRiSPs were identified to be 1.9-4% of the total venom
proteomes (Figure 1, panels a-e). This observation corresponded to the previous proteo-
mic and transcriptomic studies of these snakes [9-13].

We have successfully purified svCRiSPs from these crotaline venomous snakes using
a two-step chromatographic protocol consisting of a reverse phase C18 HPLC chromatog-
raphy, followed by SP-5PW cation exchange chromatography (Figure 1, a—e). Purified
CRiSPs showed molecular mass of approximately 25 kDa under non-reducing conditions
(Figure 1f) and were verified as CRiSPs by N-terminal automated Edman Degradation
amino acid sequencing.

Reverse phase C18 SP cation-exchange
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Figure 1. Venomics and purification steps of CRiSPs from five North American snakes (Panels a—e). Relative abundance
of different protein families in each venom were identified by LC-MS/MS and are shown in pie charts. (f) SDS-PAGE of
purified CRiSPs. M: SeeBlue Plus2 Markers (Invitrogen™). Lane 1: App-CRiSP; lane 2: Catrox-CRiSP; lane 3: Css-CRiSP;

lane 4: Chor-CRiSP; lane 5: Cada-

CRiSP.

3.2. Amino Acid Sequences of CRiSPs

Our CRiSPs shared a high similarity (80%—97%) to each other, and 70%-72% to elapid

CRiSPs (Figure 2). Subtle variations in the conformations and amino acid residues could
be responsible for their distinct biological functions.
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Figure 2. Multiple alignments of the amino acid sequence of svCRiSPs with other homologous venom proteins. All cyste-
ine residues (an asterisk above the sequences) are conserved.

3.3.

Effect of CRiSPs on Vascular Permeability and Endothelial Cell Function
In vivo Miles assay, subcutaneous injection of Css-CRiSP and App-CRiSP produced

a significant rapid increase (59%) in the trans-capillary leakage of an intravascular dye
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(Evans blue) compared to the saline control (Figure 3). App-CRiSP and Chor-CRiSP in-
creased the vascular permeability to 33% and 26%, respectively. Interestingly, neither
Catrox-CRiSP nor Cada-CRiSP was active in the Miles assay.

Vascular permeability induced by svCRiSPs using Miles assay
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Figure 3. Quantification of an in vivo permeability assay was performed using the modified Miles
assay. The results are presented as the fold change in OD for the agent versus vehicle (error bars:
SE).

Evans blue (Fold increase)

To further analyze the effect of CRiSP on blood and lymphatic cell permeability, we
used HDBECs and HDLECs in a cell permeability assay (Figure 4). App-CRiSP, Css-
CRiSP, and Catrox-CRiSP caused a significant and dose-dependent increase in HDBEC
permeability at 1.3 pM after 1 h of administration (Figure 4a). At 1.3 uM, Css-CRiSP,
Catrox-CRiSP, and App-CRiSP but not Cada-CRiSP and Chor-CRiSP, significantly in-
duced trans-endothelial permeability in HDLECs in comparison with that of cells treated
with the PBS control (Figure 4b). Of all the CRiSPs tested, Css-CRiSP and App-CRiSP dis-
played the highest increase in acute vascular and endothelial permeability compared to
other crotaline CRiSPs.

b) HDLECs

Permeability relative to control
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P— pp— “APp-CRISP Chor-CRisP Cada-CRiSP Catrox-CRiSP Css-CRISP App-CRISP

Figure 4. Effect of CRiSPs on monolayer barrier function of HDBECs (a) and HDLECs (b). Data expressed as mean + SD
of two individuals experiments (1 = 3). *p < 0.05, compared with untreated control.
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We used RPPA to screen and identify the key signaling that are involved in endothe-

lial permeability after treatment with App-CRiSP and Css-CRiSP. Cell lysates were har-
vested after treated with PBS (control) or 1 uM Css-CRiSP and App-CRiSP for 30 min and

subjected to RPPA analysis of 439 proteins or protein phosphorylation using validated
antibodies available in the Functional Proteomic RPPA Core Facility at MD Anderson

Cancer Center. (Figure 5). Studies are ongoing for identifying the key signaling that are
involved in endothelial permeability of HDLECs and HDBECs after treatment with App-

3.4. Analysis of CRiSPs Effect on Protein Expression Patterns in HDBECs and HDLECs by
CRiSP and Css-CRiSP.

RPPA Analysis
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Using the RPPA platform offers a powerful approach to identify key signaling path-

ways involved in CRiSP dependent activation. However, the RPPA read out of a protein

Figure 5. Heat map representation of RPPA analysis showing the changes in the protein expression in CRiSPs-treated
is mainly dependent on the antibody availability and quality.

HDBECs and HDLECS relative to the control group.
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4. Conclusions

This study opens new avenues of exploration on the molecular targets of svCRiSPs.
It should be relatively straightforward to extend the findings of these studies to other
svCRiSPs and in the process gain additional insight into the mechanisms of action of the
toxin and its role in the complex physiological mechanisms involved in snakebite enven-
omation.
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