ERGOT ALKALOIDS IN OAT-BASED FUNCTIONAL FOODS

Laura Carbonell-Rozas*, Francisco J. Lara, Laura Gámiz-Gracia, Ana M. García-Campaña
Department of Analytical Chemistry, Faculty of Sciences, University of Granada
Avda. Fuente Nueva s/n, 18071, Granada *rozas@ugr.es
Research group: “Quality in Food, Environmental and Clinical Analytical Chemistry” (FQM-302)

INTRODUCTION

Ergot alkaloids (EAs) are mycotoxins produced mainly by fungi of the Claviceps genus, as Claviceps purpurea. The fungus infects the seed heads of living plants, specially cereals, at the time of flowering replacing the developing grain or seed with specialized fungal structures known as sclerotium (or ergot body), which contains alkaloid substances. Although the sclerotia can be mechanically removed during the harvesting process, EAs can be found in cereal-based food, and their ingestion might cause adverse health effects in humans. The European Commission has established a maximum content of 0.5 g/kg of ergot sclerotia in most unprocessed cereals; however, the maximum content for EAs in food is still under study.

EFSAs has stated that collection of analytical data are required in order to define the variability of EAs in food and feed commodities, paying special attention to processed foods.

AIM OF THE WORK

As functional foods containing cereals as ingredients have been scarcely explored so far, in this work, we propose the extraction and quantification of the main 6 EAs; Ergometrine (Em), Ergosine (Es), Ergotamine (Et), Ergocornine (Eco), Ergorkriptine (Ekr) and Ergoricistine (Ecr), and their corresponding epimers; Ergometrmine (Emn), Ergosinine (Esn), Ergotaminine (Et/n), Ergocorninine (Econ), Ergorkriptinine (Ekr/n), Ergoricristinine (Ecr/n) in different oat-based products using QuEChERS combined with UHPLC-MS/MS.

ANALYTICAL METHOD

Chromatographic conditions
- Column: Zorbax Eclipse Plus RRHD C18 (50×2.1 mm, 1.8 μm)
- Organic solvent (B): MeOH + 0.3% formic acid
- Aqueous solvent (A): Ultrapure water + 0.3% formic acid
- Gradient: 0-6 min 30-60% B; 6-9 min 60% B; 9-10 min 60-30% B; 10-12 min 30% B
- Column temperature: 35 °C
- Flow rate: 0.4 mL/min
- Injection volume: 5 μL

MS conditions
- Ionization mode and polarity: ESI +
- Scan type: MRM
- Target scan time: 1 s

The monitored ions were the protonated molecules [M+H]+ for all of them, except for Esn, Et/n, Econ, Ekr/n and Ecr/n, where the signal at m/z corresponding to [M+H2O+H]+ was higher than that of the protonated molecules.

QuEChERS procedure
- Grain grinding
- 1 g of powder sample
- 4 mL acetonitrile: ammonium carbonate 5 mM (85:15,v/v)
- Vortex 30 s
- 9000 rpm 5 min
- Supernatant collection
- Vortex 30 s
- Filtering
- Drying and reconstitution
- 3 mL of supernatant
- 150 mg C18:Z-Sep+ (1:1)

RESULTS

Method Characterization
- Procedural calibration curves were established with LODs and LOQs between 0.1-1.0 μg/kg and 0.2-3.20 μg/kg, respectively. Good linearity was obtained (R=0.994).
- The precision, evaluated in terms of repeatability and intermediate precision, was lower than 15% RSD in all cases.
- Recovery experiments were carried out on oat samples at two concentration levels (5 and 50 μg/kg). The recoveries ranged between 90 and 106%.
- Matrix effects were lower than 20% in most cases.

Sample analysis
- 25 oat-based samples with different presentations were analyzed.

One sample of oat bran was contaminated with Em, Emn, Es and Esn in the range of 1.1-7.2 μg/kg, with a total content of EAs of 10.7 μg/kg.

CONCLUSIONS

- For the first time EAs have been explored in such a variety of oat-based functional foods.
- The modifications carried out in the QuEChERS procedure allowed to increase the sensitivity of the method and to reduce the matrix effects.
- Despite the improvements in industrial grain processing, contamination of EAs must be considered, especially in cereal-based processed foods.

Acknowledgements: Financial support of the Spanish Ministry of Science, Innovation and Universities (Project Ref.: RTI2018-097043-B-I00)