Ciguatera fish poisoning is one of the most relevant seafood-borne illnesses worldwide. It is caused by the ingestion of fish contaminated by ciguatoxins (CTXs). Primary producers of CTXs are dinoflagellates of the genera *Gambierdiscus* and *Fukuyoa*.

Why is it important to detect microalgae of the genera *Gambierdiscus* and *Fukuyoa*?

Strategy

One primer set for the genera (A) *Gambierdiscus* and *Fukuyoa* and two species-specific primers set for *Gambierdiscus* species (B) *G. australis* and (C) *G. excentricus* were designed within the D1-D3 and/or D8-D10 of the of the 28 S LSU ribosomal DNA. Primers were modified with tails, resulting in amplicons of dsDNA flanked by ssDNA tails. Recombinase Polymerase Amplification was performed at 37 °C for 30 minutes (Twist™ Kit). Samples were purified before the Sandwich Hybridization Assay.

Results

![Graph](image)

Obtained results demonstrate the ability of the system to discriminate not only the genus *Gambierdiscus* and *Fukuyoa* from other microalgae (white), but also *G. australis* (grey) and *G. excentricus* (black) species from their congeners.

Conclusions

These results demonstrate the potential of the system to discriminate *Gambierdiscus* and *Fukuyoa* genera and two *Gambierdiscus* species from other microalgae, and its limit of detection is as low as a single cell. This approach is more rapid, specific and user-friendly than traditional microscopy techniques, and paves the way towards the deployment of portable devices for in situ detection of microalgae.

Acknowledgments

The authors acknowledge financial support from the Ministerio de Economía Competitividad through the through CIGUSINEED (BID2017-87446-C2-2-R) project. Greta Gaianí acknowledges scholarship from IRTA-URV-BANCO SANTANDER.