Abstract

Targeting OGG1 as a Novel Anti-Cancer Strategy†

Bishoy M. F. Hanna 1, Torkild Visnes 1,2, Carlos Benitez-Buelga 3, Armando Cázare s-Körner 4, Kumar Sanjiv 5, Oliver Mortusewicz 6, Geoffrey Masuyer 3, Olov Wallner 7, Maurice Michel 1, Olga Loseva 1, Ann-Sofie Jemth 1, Christina Kalderen 1, Pål Stenmark 3,5, Ulrika Warman Berglund 1 and Thomas Helleday 1,8,*

1 Science for Life Laboratory, Department of Oncology and Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden; bishoy.hanna@ki.se (B.M.F.H.); torkild.visnes@sintef.no (T.V.); carlos.benitez-buelga@scilifelab.se (C.B.B.); armando.cazares@scilifelab.se (A.C.K.); kumar.sanjiv@scilifelab.se (K.S.); oliver.mortusewicz@ki.se (O.M.); olov.wallner@scilifelab.se (O.W.); maurice.michel@ki.se (M.M.); olga.loseva@scilifelab.se (O.L.); annsofie.jemth@scilifelab.se (A.-S.J.); christina.kalderen@scilifelab.se (C.K.); ulrika.warmanberglund@scilifelab.se (U.W.B.)
2 Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim, Norway
3 Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden; gm283@bath.ac.uk (G.M.); stenmark@dubb.su.se (P.S.)
4 Centre for Therapeutic Innovation, Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
5 Department of Experimental Medical Science, Lund University, SE-221 00 Lund, Sweden
6 Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
* Correspondence: thomas.helleday@ki.se
† Presented at the 1st International Electronic Conference on Cancers: Exploiting Cancer Vulnerability by Targeting the DNA Damage Response, 1–14 February 2021; Available online: https://iecc2021.sciforum.net/

Keywords: OGG1 glycosylase inhibitor; TH5487; Base excision repair; 8-oxoguanine; replication stress; cancer therapy

Due to oncogene expression and altered metabolism, reactive oxygen species (ROS) production is augmented in cancer cells resulting in oxidative DNA damage. 8-oxoguanine (8-oxoG) is one of the most abundant oxidative DNA lesions. This premutagenic lesion is eliminated from duplex DNA by 8-Oxoguanine DNA Glycosylase (OGG1), a key player in the base excision repair (BER) pathway. Here, we validate OGG1 as a potential anti-cancer target. OGG1 depletion impairs the growth of A3 T-cell lymphoblastic acute leukemia both in vitro and in vivo, but is well tolerated in non-transformed immortalized cells1. To further validate our findings, we developed TH5487, a potent small-molecule inhibitor that targets OGG1’s active site [1,2]. We show that TH5487 suppresses the growth of a wide range of tumor cells, with a favorable therapeutic index compared to non-transformed cells [1]. Mechanistically, TH5487 treatment inhibits the repair of potassium bromate-induced 8-oxo(d)G lesions, affects OGG1-chromatin dynamics, and hinders OGG1 recruitment to DNA damage regions [3]. Importantly, TH5487 induces replication stress and proliferation arrest1. This study presents a novel mechanistic strategy to exploit ROS elevation in cancer by inhibiting OGG1.

References:

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the regional experimental animal Ethical Committee in Stockholm 2010/63 (N8914)