OGG1 Inhibition as a Novel Anti-Cancer Strategy

Bishoy M. F. Hanna¹, Torkild Visnes^{1,2}, Carlos Benítez-Buelga¹, Armando Cázares-Körner¹, Kumar Sanjiv¹, Oliver Mortusewicz¹, Geoffrey Masuyer^{3,4}, Olov Wallner¹, Maurice Michel¹, Olga Loseva¹, Ann-Sofie Jemth¹, Christina Kalderén¹, Pål Stenmark^{3,5}, Ulrika Warpman Berglund¹, Thomas Helleday^{1,6}

¹ Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 21 Stockholm, Sweden, ² Department of Biotechnology and Nanomedicine, SINTEF Industry, N-7465 Trondheim, Norway, ³ Department of Biochemistry and Biophysics, Stockholm University, S-106 91 Stockholm, Sweden, ⁴ Centre for Therapeutic Innovation, Department of Pharmacology, University of Bath, Bath BA2 7AY, UK, ⁵ Department of Experimental Medical Science, Lund University, SE-221 00 Lund, Sweden, ⁶ Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK

Background

Due to oncogene expression and altered metabolism, reactive oxygen species (ROS) production is augmented in cancer cells resulting in oxidative DNA damage. 8 oxoguanine (8-oxoG) is one of the most abundant oxidative DNA lesions. This premutagenic lesion is eliminated from duplex DNA by 8-Oxoguanine DNA Glycosylase (OGG1), a key player in the base excision repair (BER) pathway. Here, we validate OGG1 as a potential anti-cancer target. OGG1 depletion impairs the growth of A3 T-cell lymphoblastic acute leukemia both in vitro and *in vivo*, but is well tolerated in non-transformed immortalized cells¹. To further validate our findings, we developed TH5487, a potent small-molecule inhibitor that targets OGG1's active site^{1,2}. We show that TH5487 suppresses the growth of a wide range of tumor cells, with a favorable therapeutic index compared to non-transformed cells¹. Mechanistically, TH5487 treatment inhibits the repair of potassium bromate-induced 8-oxo(d)G lesions, affects OGG1-chromatin dynamics, and hinders OGG1 recruitment to DNA damage regions³. Importantly, TH5487 induces replication stress and proliferation arrest¹. This study presents a novel mechanistic strategy to exploit ROS elevation in cancer by inhibiting OGG1.

Aims

- 1 Evaluating OGG1 as a potential anti-cancer target
- 2 Studying target engagement of TH5487, an in-house developed OGG1 inhibitor
- 3 Characterization of TH5487 in terms of its effect on OGG1 glycosylase activity, OGG1-chromatin binding and OGG1 recruitment kinetics
- 4 Examining the consequences of targeting OGG1 on replication fork dynamics and cell proiferation

References

- 1. Visnes T, Benítez-Buelga C, Cázares-Körner A, Sanjiv K, Hanna BMF, Mortusewicz O, et al. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress. Nucleic acids research. 2020;48(21):12234–51.
- 2. Visnes T, Cázares-Körner A, Hao W, Wallner O, Masuyer G, Loseva O, et al. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation.

Science. 2018;362(6416):834-9.

3. Hanna BMF, Helleday T, Mortusewicz O. OGG1 inhibitor TH5487 alters OGG1 chromatin dynamics and prevents incisions. Biomolecules. 2020 Oct;10(11):1–10.

Bishoy M. F. Hanna bishoy.hanna@ki.se Department of Oncology-Pathology Karolinska Institute Stockholm, Sweden

This project has funding from the European Union's Horizon 2020 research anreceivedd innovation programme under the Marie Sklodowska-Curie grant agreement No. 722729.

