NEIL3-mediated mitotic base excision repair of oxidative lesions at telomeres prevents
senescence in hepatocellular carcinoma

Helge Gad'**, Zhao Zhenjun? Carlos Benitez-Buelga', Kumar Sanjiv', Hua Xiangwei“, He Kang?, Feng Mingxuan?, Zhao Zhicong? Ulrika Warpman Berglund’, Xia Qiang? Thomas Helleday'~

1) Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, S-171 76 Stockholm, Sweden. 2) Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.

3) Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK. 4) Organ Transplantation Center, the Affiliated Hospital of Qingdao University, Qingdao, China

Introduction

BER Pathway ~_ Oewminated, Akyutad o Summa ry
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and M
the third leading cause of cancer death worldwide. Chronic liver diseases contributes to s NEIL3 is overexpressed in HCC which correlates with poor survival.
accumulation of reactive oxygen species (ROS) and inflammation, leading to cirrhosis ‘ | : L : :
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and eventually HCC. Although many approaches have been suggested to treat HCC 5 o e doi i L : : : :
: . . i bt AR ting in Telomere dysfunctional foci (TIFs) and 53BP1 foci formation.
(e.g., surgery, transarterial chemoembolization (TACE), immunotherapy and targeted , . WL W 551, TH
therapies), effective drugs and non-surgical treatment for HCC patients remain very B : NEIL3 relocates to telomeres following oxidative DNA damage during mitosis and recruits apuri-
limited strand scission ) l ”H- nic endonuclease 1 (APE1), indicating activation of base excision repair.
ROS production increases during G2/M-phase and induction of oxidative damage in —— L qy o [Long pateh BeR NEIL3, but not NEIL1 or NEIL2, is required to initiate base excision repair at oxidized telomeres
this phase arrests. cells in pro-metaphase, suggesting that the level of epdogenpus & ; — that is dependent on APE1 and PolB.
DNA damage varies during the cell cycle and have more severe effects in certain Gap Filing l Mn- TG e St
phases. 4 Repetitive exposure of oxidizing damage in NEIL3 depleted cells induced chromatin bridges
It is well established that there is differential DNA repair at telomeres. Telomeres are - & mm‘mmml ma— and damaged telomeres.
sensitive to oxidative damage, resulting in cell senescence, chromosome fusion and — l o displacement 4 .
apoptosis. While BER pathways are described to be active at telomeres, information ¢ A " E: These data suggest NEIL3 could be a target for therapeutic intervention of HCC, and perhaps a
ina. rove to be a good strategy to induce ROS and prevent its repair in the tumour.
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