

Recycling-oriented design of the Al-Zn-Mg-Ca alloys

Pavel Shurkin ^{1,*}, Nikolay Belov ¹, Torgom Akopyan ¹ and Zhanna Karpova^{1,2}

¹National University of Science and Technology MISiS, 119049, Moscow, Russia; ²Keldysh Research Center, 119049, Moscow, Russia

Relevance

Hazardous primary Al

Recycling saves 95% energy and reduces 90% emissions & by-products

not applicable to alloys tailored for high-strength performance (e. g. 7xxx)

Background

Calcium

3.4 wt. % in the earth crust

Al_FerMg,Si

Positive experience on Al-Zn-Mg-Ni-Fe alloys (AZ6NF, Al₉FeNi as the main phase, Russian Standard 2019, Fe>0,5% UTS>520

Al-Zn-Mg-Ca alloys

Al-Zn-Mg-Si

Materials & Methods

Chemical compositions of the model alloys

Melting and casting

Alloy	Nominal and actual concentrations (in brackets), wt. %					
	Zn	Mg	Ca	Fe	Si	Al
AlZnMg	8(8.1)	3 (2.8)	0	0	0	Balance
AlZnMgFeSi	8 (7.9)	3 (2.9)	0	0.5(0.51)	0.5(0.49)	Balance
AlZnMg1Ca	8 (7.7)	3 (2.6)	1(0.9)	0	0	Balance
AlZnMg2Ca	8 (7.8)	3 (3.1)	2(1.8)	0	0	Balance
AlZnMg1CaFeSi	8 (8.0)	3 (2.8)	1(0.9)	0.5(0.55)	0.5(0.51)	Balance
AlZnMg2CaFeSi	8 (7.7)	3 (2.9)	2(1.9)	0.5(0.52)	0.5(0.50)	Balance

Duroline MH-6 (HV)

Thermal analysis

Solidification & Phase composition

Polythermal section of the Al-Zn-Mg-Ca-Fe-Si system at 8%Zn, 3%Mg, 1%Ca and 1%(Fe+Si).

Evolution of the fraction of phases upon the temperature in AlZnMgFeSi, AlZnMg1CaFeSi, AlZnMg2CaFeSi alloys

Solidification & Phase composition

As-cast structure

(Al)+T

 $(Al)+Al_8Fe_2Si+Mg_2Si$

 $Al_{10}CaFe_2 + Al_2CaSi_2 + (Al, Zn)_4Ca + T$

AlZnMg

AlZnMgFeSi

AlZnMg2CaFeSi

Calcium alloying must be rational as it promotes formation of excessive aluminides volume

Plate-like Al₂CaSi₂

As-cast structure

AlZnMg1CaFeSi

no Mg₂Si phase but Al₂CaSi₂ phase is finely needle in some places Al₁₀CaFe₂ phase co-exist with Al₃Fe phase and they both are curved Non-equilibrium T phase may be observed

Two-step annealing 450 °C,3h+520 °C,3h/water

AlZnMgFeSi

AlZnMg1CaFeSi

Deformation and recycling feasibilities

After 80% hot rolling (400 °C) reduction

6060 and 6063 alloys are 80% recycled aluminium

JSC Aluminium Alloys Plant (Podolsk, Russia)

6063 alloy as supplied (Al-0.45Mg-0.43Si-0.37Fe-0.1Cu-0.07Mn-0.02Ti)

<u>Ε 50 μm</u>

Homogenized billet

Conclusions

- 1. The recycling-tolerant Al-Zn-Mg-Ca alloys may be formulated via appropriate alloying and solidification conditions provided as-cast structure included multiphase eutectic with differentiated insoluble intermetallics which must contain impurities of recycling origin, primarily, Fe and Si.
- 2. The phase composition and solidification path of the Al-Zn-Mg-Ca-Fe-Si alloys showed the presence of multiphase eutectic (Al)+Al₃Fe+Al₂CaSi₂+Al₄Ca under equilibrium solidus of 540 °C. However, the first annealing step at 450 °C is required for the dissolving of the non-equilibrium eutectic solidified at ~480 °C.
- 3. In comparison to AlZnMgFeSi and AlZnMg2CaFeSi, the AlZnMg1CaFeSi exhibited fine as-cast structure included differentiated constituents of equilibrium origin Al₃Fe, Al₁₀CaFe₂, Al₂CaSi₂ and (Al.Zn)₄Ca. After two-step annealing, they were mostly spheroidized along with non-equilibrium T phase was dissolved in (Al).
- 4. While the Al-Zn-Mg-Ca alloys lose their performance due to Zn dissolution in (Al, Zn)₄Ca phase the joint Ca, Fe, Si alloying promotes the formation of Ca-bearing phases and an increase in solute Zn in (Al). The AlZnMg1CaFeSi in T6 possess a similar hardness value as the base AlZnMg alloy (195 HV vs 200 HV).
- 5. The composition related to the AlZnMg1CaFeSi alloy may serve as a sufficient basis for the design of the new high-strength recycling-tolerant wrought Al alloys since it shows good microstructure similar to that of 6xxx alloys, excellent hardening response, appropriate processability at metal forming, and may be formulated from Fe- and Si-rich aluminum scrap.

Thank you for attention!

Pavel Shurkin

Cand. Sci.(tech), Department of Metal Forming, NUST MISiS

E-mail: pa.shurkin@gmail.com Phone: +7 (926) 585-19-90

This research was funded by the Russian Science Foundation (project no. 19–79– 30025)

