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My personal encounter with A.D. Sakharov

As a graduate student, I was in Moscow at 
Lebedev Physical Institute (FIAN) during 
the years 1980-1986, in its Theoretical 
Department (Ginzburg Lab). 

Academician A.D.Sakharov also belonged 
to the same Department, as well as some 
other great cosmologists (e.g., A. Linde and 
V. Mukhanov).

Over 1980-1986 A.D. Sakharov was put in 
exile by Soviet authorities. I was able to see 
him in person during the International 
Seminar on Quantum Gravity in Moscow, 
in May 1987. 

Besides his great contributions to physics 
and politics, A.D. Sakharov was strongly 
advocating academic freedom. 



PLAN of TALK

• General motivation: why inflation, why PBHs, why supergravity
• Starobinsky inflation (review and main ideas to be elevated to supergravity)
• The standard approach to cosmology in supergravity, and its problems
• The alternative minimal description of Starobinsky inflation in supergravity
• Generating seeds of PBHs after inflation (scenarios and their realizations)

in gravity and supergravity
• Specific modified supergravity models for a more fundamental description

of Starobinsky inflation and PBHs seeds produced after inflation
• Conclusion and Outlook: gravitational waves
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WHY INFLATION in THE EARLY UNIVERSE

• Cosmological inflation (a phase of quasi-de-Sitter accelerated expansion
with an exit) was proposed to explain homogeneity and spatial flatness of our 
Universe at large scales, its large size and entropy; inflation can explain the al-
most scale-invariant spectrum of CMB radiation; cosmological perturbations from 
quantum fluctuations during inflation can seed the CMB anisotropy and the LSS.
• Inflation is a paradigm, not a theory! Theoretical mechanisms of inflation

use a driver (called inflaton field) with proper scalar potential.
• The physical nature and origin of inflaton and scalar potential, as well as its

interactions with other fields are the big mysteries.
• There is a more fundamental (vs. phenomenological) way of thinking about

inflation, and it is given by supergravity and string theory.
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WHY PRIMORDIAL BLACK HOLES

• Primordial density fluctuations may also be responsible for seeding PBHs,
when their amplitude is larger by a factor of ∼ 107 compared to the amplitude
observed at CMB scales;
• PBHs as possible non-particle DM, and seeds of supermassive BHs;
• Induced GW may be observed (advanced LIGO/VIRGO/KAGRA, LISA).
• Theoretical description of the PBH formation from inflation is possible either

in the context of single-field inflation or in the context of multi-field inflation.
• There is a more fundamental (vs. phenomenological) way of thinking about

PBH seeds, given by supergravity and string theory. A good theory is needed.
”There is nothing more practical than a good theory” (E. Witten).
• PBHs study constrains physics, ”even when PBHs never formed” (B. Carr).
• IPMU is the right place for PBHs studies: M.Sasaki, T. Suyama, T. Tanaka,

S. Yokoyama, arXiv:1801.05235 for a review.
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WHY SUPERSYMMETRY  (N=1 in 4D)



WHY SUPERGRAVITY

• Supergravity is a field theory with local SUSY that automatically implies GR.
• Supergravity is the only way to consistently describe a spin-3/2 field in GR;
• Supergravity remains the primary candidate for new physics beyond the

SM; it connects gravity to particle physics, unifies bosons and fermions, and
severely restricts their couplings;
• SUSY leads to a cancellation of quadratic divergences in quantum loops;
• Some supergravity theories arise as the low-energy effective actions in

(compactified) superstring theory (quantum gravity) in String Landscape; a vi-
able description of inflation and PBHs in those supergravities thus leads to their
UV-completion in string theory.
• Supergravity as a more fundamental theoretical framework to the phe-

nomenological model building (though not an ultimate one).
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Starobinsky inflationary model (not from the historical perspective!)

The Starobinsky model of inflation is defined by the action (Starobinsky,1980)

SStar. =
M2

Pl

2

∫
d4x

√−g
(
R+

1

6m2
R2
)
, (1)

where we have introduced the reduced Planck mass MPl = 1/
√
8πGN ≈ 2.4×

1018 GeV, and the scalaron (inflaton) mass m as the only parameter. We use the
spacetime signature (−,+,+,+, ).

The (R+R2) gravity model (1) can be considered as the simplest extension of the
standard Einstein-Hilbert action in the context of modified F(R) gravity theories
with an action

SF =
M2

Pl

2

∫
d4x

√−g F(R) , (2)

in terms of the function F(R) of the scalar curvature R.
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Equivalence between f(R) gravity and scalar-tensor gravity I

The F(R) gravity action (2) is classically equivalent to

S[gµν, χ] =
M2

Pl

2

∫
d4x

√−g
[
F ′(χ)(R − χ) + F(χ)

]
(3)

with the real scalar field χ, provided that F ′′ �= 0 that we always assume. The
primes denote the derivatives with respect to the argument.

The equivalence is easy to verify because the χ-field equation implies χ = R. In
turn, the factor F ′ in front of the R in (3) can be (generically) eliminated by a Weyl
transformation of metric gµν, which transforms the action (3) into the action of the
scalar field χ minimally coupled to Einstein gravity and having the scalar potential

V =

(
M2

Pl

2

)
χF ′(χ)− F(χ)

F ′(χ)2
. (4)
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Equivalence between f(R) gravity and scalar-tensor gravity II

The kinetic term of χ becomes canonically normalized after the field redefinition
χ(ϕ) as

F ′(χ) = exp
(√

2
3ϕ/MPl

)
, ϕ =

√
3MPl√
2

lnF ′(χ) , (5)

in terms of the canonical inflaton field ϕ, with the total acton

Squintessence[gµν, ϕ] =
M2

Pl

2

∫
d4x

√−gR−
∫

d4x
√−g

[
1
2g
µν∂µϕ∂νϕ+ V (ϕ)

]
.

(6)

The classical and quantum stability conditions of F(R) gravity theory are given
by

F ′(R) > 0 and F ′′(R) > 0 , (7)

and they are obviously satisfied for Starobinsky model (1) for R > 0.
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The inverse transformation

The inverse transformation reads

R =

[ √
6

MPl

dV
dϕ +

4V

M2
Pl

]
exp

(√
2
3ϕ/MPl

)
, (8)

F =

[ √
6

MPl

dV
dϕ +

2V

M2
Pl

]
exp

(
2
√

2
3ϕ/MPl

)
. (9)

In the case of Starobinsky model (1), one finds the famous potential

V (ϕ) =
3

4
M2

Plm
2
[
1− exp

(
−
√

2
3ϕ/MPl

)]2
. (10)

This scalar potential is bounded from below (non-negative and stable), and it has
the absolute minimum at ϕ = 0 corresponding to a Minkowski vacuum. The
scalar potential (10) also has a plateau of positive height (related to the inflationary
energy density), that gives rise to slow roll of inflaton during the inflationary era.
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The inflationary features

A duration of inflation is measured in the slow roll approximation by the e-foldings
number

Ne ≈ 1

M2
Pl

∫ ϕ∗
ϕend

V

V ′dϕ , (11)

where ϕ∗ is the inflaton value at the reference scale (horizon crossing), and ϕend
is the inflaton value at the end of inflation when one of the slow roll parameters

εV (ϕ) =
M2

Pl

2

(
V ′
V

)2
and ηV (ϕ) =M2

Pl

(
V ′′
V

)
, (12)

is no longer small (close to 1).

The amplitude of scalar perturbations at horizon crossing is given by

As =
V 3∗

12π2M6
Pl(V∗

′)2
=

3m2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)
. (13)
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Spe
tral predi
tions of the one-�eld in
ationarys
enario in GRS
alar (adiabati
) perturbations:P�(k) = H4k4�2 _�2 = GH4k�j _Hjk = 128�G 3V 3k3V 02kwhere the index k means that the quantity is taken at themoment t = tk of the Hubble radius 
rossing during in
ationfor ea
h spatial Fourier mode k = a(tk)H(tk). Through thisrelation, the number of e-folds from the end of in
ation ba
kin time N(t) transforms to N(k) = ln kfk wherekf = a(tf )H(tf ), tf denotes the end of in
ation.The spe
tral slopens(k)� 1 � d lnP�(k)d ln k = 1�2  2 V 00kVk � 3�V 0kVk�2!

(according to A.A. Starobinsky)



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844(1979)):Pg (k) = 16GH2k� ; ng (k) � d lnPg (k)d ln k = � 1�2 �V 0kVk�2The 
onsisten
y relation:r(k) � PgP� = 16j _Hk jH2k = 8jng(k)jTensor perturbations are always suppressed by at least thefa
tor � 8=N(k) 
ompared to s
alar ones. For the presentHubble s
ale, N(kH) = (50� 60).



Starobinsky inflation and CMB (Planck)

The Starobinsky model (1) is in very good agreement with the Planck data. The
Planck (2018) satellite mission measurements of the Cosmic Microwave Back-
ground (CMB) radiation give the scalar perturbations tilt as ns ≈ 1+2ηV −6εV ≈
0.9649±0.0042 (68%CL) and restrict the tensor-to-scalar ratio as r ≈ 16εV <
0.064 (95%CL). The Starobinsky inflation yields r ≈ 12/N2

e ≈ 0.004 and
ns ≈ 1 − 2/Ne, where Ne is the e-foldings number between 50 and 60, with the
best fit at Ne ≈ 55.

The Starobinsky model (1) is geometrical (based on gravity only), while its (mass)
parameter m is fixed by the observed CMB amplitude (COBE, WMAP) given by
log(1010As) = 2.975± 0.056 (68%CL) (or As ≈ 1.96 · 10−9) as

m ≈ 3 · 1013 GeV or
m

MPl
≈ 1.3 · 10−5 . (14)

A numerical analysis of (11) with the potential (10) yields (with Ne ≈ 55)√
2

3
ϕ∗/MPl ≈ ln

(
4

3
Ne

)
≈ 5.5 ,

√
2

3
ϕend/MPl ≈ ln

[
2

11
(4 + 3

√
3)
]
≈ 0.5

(15)
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More comments about Starobinsky inflation

• Universality for slow roll: see Eqs. (8) and (9);
• No free parameters (high predictive power);
• Einstein criterium (”simple but not too simple”):

• Attractor solution with an exit: H(t) ≈ M
6

Starobinsky potential (10) won against a pow(er )potential (Planck mission, 2018);
2
(tend−t)+. . . that is driven by

the +R2 term (scale invariance, no ghost; uniqueness in quadratically modified
gravity);
• The UV-cutoff of (R + R2) gravity is MPl � Hinf ., after expanding the

Starobinsky potential (10) in powers of φ;
• Starobinsky potential as the mass term: 3

2g(1− e−
√

2/3φ) = ϕ yields the
non-canonical kinetic term with a singularity at ϕcr. = 3g/(2m) and the critical
exponent α =

√
2/3 (the universality again);

• Any viable inflationary model should be close to the Starobinsky model!

11
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Example: ”Higgs inflation”

Basic ideas (Bezrukov, Shaposhnikov, 2007):

(i) identify inflaton field with Higgs field of the SM,

(ii) assume no new physics beyond the SM up to Planck scale,

(iii) add non-minimal coupling of Higgs field to gravity.

The Lagrangian (in Jordan frame) reads (MPl = 1)

LJ =
√−g

[
1

2
(1 + ξφ2)R− 1

2
gµν∂µφ∂νφ− VH(φ)

]
(16)

where

VH(φ) =
λ

4

(
φ2 − v2

)2
(17)
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Details of Higgs inflation

• go from the original (Jordan) frame to Einstein frame via

g
µν
J = g

µν
E (1 + ξφ2) (18)

• get a canonical scalar kinetic term for ϕ = ϕ(φ) by

dϕ

dφ
=

√
1+ ξ(1 + 6ξ)φ2

1 + ξφ2
(19)

This yields the standard (quintessence) Lagrangian

LE =
√−g

[
1

2
R− 1

2
gµν∂µφ∂νφ− V (ϕ)

]
(20)

with the (nonrenormalizable) potential

V (ϕ) =
VH(φ(ϕ))[

1+ ξφ2(ϕ)
]2 (21)
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The large field approximation

• In the large field approximation, ϕ� ξ−1, a solution to (19) is

ϕ ≈
√

3
2 ln

(
1+ ξφ2

)
(22)

so that one arrives at the same Starobinsky potential (10):

V (ϕ) =
λ

4ξ2

(
1− e−

√
2/3ϕ

)2
(23)

Thus, Starobinsky and Higgs inflation are in the same universality class.
• The (CMB) observations require ξ/

√
λ ≈ 5 · 104, or ξ of the order 104.

• The UV-cutoff of Higgs inflation isMPl/ξ ∼ Hinf ., after expanding Eq. (21).
• Due to the nonrenormalizability of GR, the scalar potential of Higgs field at

the inflationary scale cannot be predicted. The SM renormalization of λ becomes
invalid below the inflationary scale.
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Comments about Higgs inflation

• Actually, the SM Higgs fieldH is a doublet, though one can choose the unitary
gauge in which H = φ/

√
2 in the Higgs Lagrangian

LH =
√−g

[
1

2
R+ ξH†HR− gµν∂µH

†∂νH − λ

(
H

†
H − 1

2
v2
)2]

(24)

• iI the large field approximation and during slow roll (inflation) we can ignore
the scalar kinetic term and simplify the potential as

LH ≈ √−g
[
1

2
(1+ ξφ2)R− λ

4
φ4
]

(25)

Then varying with respect to the auxiliary field φ yields ξφR = λφ3 or

φ2 =
ξ

3
R (26)

Substituting it into LH gives the Starobinsky model again:

LH ≈ √−g
(
1

2
R+

ξ2

4λ
R2
)

(27)
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The standard approach to inflation in supergravity

• assumes inflaton in a chiral supermultiplet (max. spin 1/2), and it requires
complexification of inflaton. Another chiral supermultiplet with spin-1/2 goldstino,
required by spontaneous SUSY breaking caused by inflation, is also needed (thus
leads to multi-field inflation); Φ(x,Θ) = φ(x) +Θψ(x) +Θ2F(x).
• Slow-roll inflation is obtained by engineering the scalar potential V in terms

of a Kähler potential K and a superpotential W as (MPl = 1)

VF = eK
(
|DW |2 − 3 |W |2

)
with DW =W ′ +K ′W .

• Problems: (i) η-problem, (ii) need of stabilization of non-inflaton scalars that
may easily spoil inflation, (iii) no fundamental input for a choice of (K,W ) and
inflationary (single-field) trajectory (low predictive power), (iv) no UV-completion,
and (v) no control over quantum (gravity) corrections.
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The alternative N = 1 supergravity frameworks

• Basic Proposition: minimize the theoretical input (# d.o.f. and interactions)
for higher predictive power; employ (modified) supergravity only ;

• Basic Ideas:
(i) assign inflaton to a massive vector multiplet (max. spin 1) to get rid of sinflaton;
it appears to be suitable for single-field inflation and PBHs;
(ii) use modified supergravity interactions (no ”supermatter”) similarly to GR in the
(R+R2) modified gravity; it appears be suitable for two-field inflation and PBHs;

• Methods (technology):
(a) supergravity in curved superspace with manifest local SUSY;
(b) the N = 1 superconformal tensor calculus.

arXiv: 1011,0240, 1203.0805, 1309.7494, 1510.03524, 1607.05366, 1911.01008 
[hep-th], with A.A. Starobinsky, T. Terada, Y. Aldabergenov, S. Tsujikawa, et al.
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1. Inflaton in a massive vector supermultiplet

The inflaton (scalaron) can belong to a massive vector multiplet V that has a
single physical scalar. The scalar potential of a vector multiplet is given by the D-
term instead of the F -term. Any desired values of the CMB observables (ns and
r) and a nearly inflection point are possible. The only restriction by SUSY reads:
the inflaton scalar potential is a real function squared, governed by arbitrary real
potential J(gV ). The Lagrangian is

L =
∫
d2θ2E

{
3
8(DD − 8R)e−

2
3J + 1

4W
αWα

}
+h.c. , (2)

and its bosonic part in Einstein frame reads

e−1L = 1
2R− 1

4FmnF
mn − 1

2J
′′∂mC∂mC − g2

2 J
′′BmBm − g2

2 J
′2 , (3)

where C = V | is the real scalar inflaton field and J = J(C).

The D-type scalar potential of the Starobinsky inflationary model is obtained by
choosing (MPl = 1)

J(C) = 3
2 (C − lnC) and C = exp

(√
2/3φ

)
. (4)
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Super-Higgs mechanism

Consider the master function J(V ) as a function J̃(He2VH) where we have

introduced the Higgs chiral superfield H. The J̃ is invariant under the gauge

transformations

H → e−iZH , H → eiZH , V → V + i
2(Z − Z̄) , (3)

whose gauge parameter Z itself is a chiral superfield. The original theory of the

massive vector multiplet governed by the master function J is recovered in the

supersymmetric gauge H = 1.

We can now choose the different (Wess-Zumino) supersymmetric gauge in which

V = V1, where V1 describes the irreducible massless vector multiplet minimally

coupled to the dynamical Higgs chiral multiplet H (Aldabergenov, SVK, 2017).

The standard Higgs mechanism appears when choosing the canonical function

J = 1
2He2V H̄ that corresponds to a linear function J̃ .
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2. The modified supergravity approach

The most straightforward way of extending the (R+ R2) gravity to supergravity
(Starobinsky and SVK 2011, Terada and SVK 2013) is described by a generic
action

S =
∫
d4xd4θE−1N(R, R̄) +

[∫
d4xd2Θ2EF(R) + h.c.

]
(1)

in terms of the N = 1 chiral superfield R having a complex scalar X as its first
field component and the scalar curvature R as its last field component at Θ2.

In particular, the action above is merely quadratic in R (no higher powers of R).

The action (1) can be transformed into the standard matter-coupled Einstein su-
pergravity with two chiral matter superfields (Cecotti 1987, Gates and SVK 2009).
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Modified supergravity models

Let us expand the functions N and F in Taylor series and keep only a few leading
terms, as our first probe of modified supergravity (MPl = 1),

N =
12

M2
RR− ξ

2
(RR)2 , F = α+3βR , (1)

with real parameters M and ξ, and complex parameters α and β.
• The chiral superfields R and E read

R = X +Θ
(
−1

6σ
mσnψmn − iσmψmX − i

6ψmb
m
)
+

+Θ2
(
− 1

12R− i
6ψ

mσnψmn − 4XX − 1
18bmb

m+ i
6∇mb

m+

+ 1
2ψmψ

mX + 1
12ψmσ

mψnb
n − 1

48ε
abcd(ψaσbψcd+ ψaσbψcd)

)
,(2)

2E = e
[
1 + iΘσmψm+Θ2(6X − ψmσ

mnψn)
]
, (3)

• The standard supergravity is reproduced when N = 0 and F = −3R.
• Starobinsky inflation is realized when α = 0, β = −3, and M equals to

the scalaron mass, and dynamics of X is suppressed (Addazi and SVK, 2017).
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Effective two-scalar field Lagrangian

In the notation
M4ξ

144
≡ ζ and |X| ≡ M

2
√
6
σ , (4)

where σ is the radial part of the complex scalar X, after ignoring Its angular part
that does not appear in the scalar potential, together with bm = 0, the bosonic
part of the Lagrangian in our model takes the familiar form

e−1L =
1

2
f(R, σ)− 1

2(1− ζσ2)(∂σ)2 − U , (5)

where we have the specific functions dictated by modified supergravity,

f(R, σ) =
(
1+ 1

6σ
2 − 11

24ζσ
4
)
R+

1

6M2
(1− ζσ2)R2 , (6)

U =
1

2
M2σ2

(
1− 1

6σ
2 + 3

8ζσ
4
)
. (7)
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(Standard) transfer to Einstein frame in field components

After introducing the auxiliary field χ and rewriting the Lagrangian as

e−1L = 1
2 [fχ(R− χ) + f ]− 1

2(1− ζσ2)(∂σ)2 − U , (8)

where fχ ≡ ∂f
∂χ and in f ≡ f(χ, σ), R was replaced by χ, varying w.r.t. χ gives

back the initial Lagrangian. On the other hand, after Weyl rescaling,

gmn → f−1
χ gmn , e→ f−2

χ e , efχR → eR− 3
2ef

−2
χ (∂fχ)

2 , (9)

with

fχ = A+Bχ A ≡ 1+ 1
6σ

2 − 11
24ζσ

4 , B ≡ 1

3M2
(1− ζσ2) , (10)

in terms of the canonically normalized scalaron ϕ defined by

fχ = exp
[√

2
3ϕ

]
, χ = 1

B


e
√

2
3ϕ − A


 , f =

1

2B


e2

√
2
3ϕ − A2


 , (11)

the Lagrangian in Einstein frame takes the form

e−1L = 1
2R− 1

2(∂ϕ)
2 − 1

2(1− ζσ2)e
−
√

2
3ϕ(∂σ)2 − V , (12)
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whose two-field scalar potential reads

V =
1

4B


1−Ae

−
√

2
3ϕ


2

+ e
−2
√

2
3ϕU =

=
3M2

4(1− ζσ2)


1− e

−
√

2
3ϕ − σ2

6

(
1− 11

4 ζσ
2
)
e
−
√

2
3ϕ


2

+
M2

2
e
−2
√

2
3ϕσ2

(
1− 1

6σ
2 + 3

8ζσ
4
)
. (13)

When σ2 > 1/ζ, the scalar σ becomes a ghost. However, when approaching
σ2 = 1/ζ, the scalar potential becomes singular, so that it would take the infinite
amount of energy to turn σ into a ghost (assuming its starting value in the region
σ2 < 1/ζ).
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Scalar potential in Einstein frame

V =
1

4B
(1− Ax)2+x2U , e

−
√

2
3ϕ ≡ x ,



A = 1+ 1

6σ
2 − 11

24ζσ
4 ,

B = 1
3M2(1− ζσ2) ,

U = M2

2 σ2
(
1− 1

6σ
2 + 3

8ζσ
4
)
.

The scalar potential on the left with ζ = 1/54 ≈ 0.019 and three Minkowski 
minima; on the right with ζ = 0.027, a single Minkowski minimum at σ = 0 and 
two inflection points. In both cases M = 1.
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Superfield transfer to Einstein matter-coupled supergravity

After introducing the Lagrange multiplier superfield T as (Terada and SVK, 2013)

L =
∫
d2Θ2E

{
−1

8(D2 − 8R)N(S,S) + F(S) + 6T(S−R)
}
+h.c. , (14)

varying the Lagrangian w.r.t. the T gives back the original Lagrangian. On the
other hand, the Lagrangian can above be rewritten to the form

L =
∫
d2Θ2E

{
3
8(D2 − 8R)

[
T+T− 1

3N(S,S)
]
+ F(S) + 6TS

}
+h.c.

(15)
that can be put into the standard form in supergravity,

L =
∫
d2Θ2E

[
3
8(D2 − 8R)e−K/3 +W

]
+h.c. , (16)

where the Kähler potential K and the superpotential W in our basic model are 

K = −3 log(T+T− Ñ) , Ñ ≡ SS− 3
2ζ(SS)

2 , (17)

W = 3MS
(
T− 1

2

)
. (18)
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Two-field scalar Lagrangian

takes the form of a non-linear sigma-model (NLSM) minimally coupled to gravity,

e−1L = 1
2R− 1

2GAB∂φ
A∂φB − V , (1)

where φA = {ϕ, σ}, A = 1,2, and the NLSM target space metric is given by

GAB =


1 0

0 (1− ζσ2)e
−
√

2
3ϕ


 (2)

With the FLRW spacetime metric gmn = diag(−1, a2, a2, a2) the EoM read

ϕ̈+3Hϕ̇+
1√
6
(1− ζσ2)e

−
√

2
3ϕσ̇2 + ∂ϕV = 0 , (3)

σ̈+3Hσ̇ − ζσσ̇2

1− ζσ2
−
√

2
3ϕ̇σ̇+

e

√
2
3ϕ

1− ζσ2
∂σV = 0 , (4)
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Friedmann equation and inflationary parameters I

In addition, Friedmann equation reads (in terms of Hubble function H ≡ ȧ/a)

3H2 = 1
2ϕ̇

2 + 1
2(1− ζσ2)e

−
√

2
3ϕσ̇2 + V , (5)

The standard slow roll parameter (in terms of t̃ ≡ Mt and H̃ = H/M ) is

ε ≡ − Ḣ

H2
= −

˙̃H

H̃2
. (6)

Following Gundhi and Steinwachs (2018), we introduce the field-space velocity
and acceleration unit vectors as

ΣA ≡ φ̇A

|φ̇| , ΩA ≡ ωA

|ω| , (7)

respectively, where the absolute value of a field-space vector aA is defined by
|a| ≡

√
GABa

AaB, and the acceleration vector ωA is defined by
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Inflationary parameters II

ωA ≡ Σ̇A+ΓABCΣ
Bφ̇C



ωϕ = Σ̇ϕ+ 1√

6
(1− ζσ2)e

−
√

2
3ϕΣσσ̇ ,

ωσ = Σ̇σ − 1√
6
(Σϕσ̇+Σσϕ̇)− ζσ

1−ζσ2Σ
σσ̇ .

(8)
Then the effective mass matrix is given by

MA
B ≡ GAC∇B∂CV −RACDBφ̇

Cφ̇D , (9)

where RACDB is the Riemann tensor of the NLSM scalar manifold. The adiabatic
and isocurvature parameters are defined by

ηΣΣ ≡ MA
BΣAΣ

B

V
, ηΩΩ ≡ MA

BΩAΩ
B

V
, (10)

respectively, where ηΣΣ plays the role of the second slow-roll parameter.
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Transfer functions and inflationary observables

The transfer functions are defined by

TSS(t1, t2) ≡ exp

[∫ t2
t1
dt′β(t′)H(t′)

]
, (11)

TRS(t1, t2) ≡ 2
∫ t2
t1
dt′|ω(t′)|TSS(t1, t2) , (12)

where

β(t) ≡ −2ε+ ηΣΣ − ηΩΩ − 4|ω|2
3H2

. (13)

The transfer functions describe the evolution of perturbations on superhorizon
scales, i.e. from the moment of horizon exit t1 (of the k-mode of interest) un-
til some later time t2. According to the PLANCK data (arXiv:1807.06211[astro-
ph.CO]), the observed values of ns and r are

ns = 0.9649± 0.0042 (1σ CL) and r < 0.064 (2σ CL) . (14)
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Inflationary solution I  (generic)

Consider the case (I) of ζ = 1/54 ≈ 0.019 with three Minkowski minima. We nu-
merically solved the field equations with the initial conditions ϕ(0) = 6, σ(0) =

3, and the vanishing initial velocities. The field σ quickly drops to its minimum
σ = 0, so that the trajectory becomes similar to that in the single-field Starobin-
sky inflation. It is a generic feature when the initial velocities are zero (or almost
zero), ϕ(0) � 6 and |σ(0)| � σmax, where σmax = 1/

√
ζ is the upper bound

on σ where the potential is infinite. When ζ = 1/54 we find σmax ≈ 7.35.

The solution (I) leads to the spectral tilt and the tensor-to-scalar ratio as ns ≈
0.9662 and rmax ≈ 0.003, respectively, which are consistent with the observed
values and the theoretical (Starobinsky) predictions of chaotic single-field inflation.
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Field-space trajectories I. The blue shaded region is last 60 e-folds.
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Inflationary solution II  (special) 

As regards PBH production after inflation, let us consider the field-space trajec-
tory going through the saddle point of the potential, that is a maximum in the
σ-direction and a (local) minimum in the ϕ-direction. Then the saddle point di-
vides inflation into two stages. We found a set of initial conditions that leads to
such trajectory (solution II) with

ϕ(0) = 5 , σ̇(0) = 79.784527415607 , σ(0) = ϕ̇(0) = 0 . (1)

The total number of e-foldings is around 40, though it can be larger for larger
values of ϕ(0) with more fine-tuning of the initial velocities.

Thus, in order to achieve two-stage inflation, where the field-space trajectory
passes through the saddle point, we have to significantly fine-tune initial condi-
tions. When ϕ is large, the potential takes the shape of a valley with the minima
at σ = 0, so a generic behavior of σ is to quickly relax at σ = 0, and let ϕ drive
the entire inflationary period. Therefore, our basic model needs to be generalized
for the sake of PBHs production.
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Field-space trajectories II, Hubble function and e-folds.



More general models in modified supergravity

Adding the next-order terms to the modified supergravity potentials yields

N =
12

M2
|R|2 − 72

M4
ζ|R|4 − 768

M6
γ|R|6 , (1)

F = −3R+
3
√
6

M
δR2 . (2)

The corresponding Lagrangian in Einstein frame reads

e−1L = 1
2R−1

2(∂ϕ)
2−3M2

2 Be
−
√

2
3ϕ(∂σ)2− 1

4B


1− Ae

−
√

2
3ϕ


2

−e−2
√

2
3ϕU ,

where the functions A,B,U are given by

A = 1− δσ+ 1
6σ

2 − 11
24ζσ

4 − 29
54γσ

6 ,

B =
1

3M2
(1− ζσ2 − γσ4) , (3)

U = M2

2 σ2
(
1+ 1

2δσ − 1
6σ

2 + 3
8ζσ

4 + 25
54γσ

6
)
.
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PBHs in the γ-model with δ = 0

Let us choose γ = 1 and ζ = −1.7774 for a numerical analysis. The scalar
potential has two valleys and a single Minkowski minimum at σ = ϕ = 0. The
first slow-roll (SR) inflation is possible along either of the valleys. The valleys
merge into the Minkowski minimum by passing through inflection points (or near-
inflection points) followed by the second, ultra-slow-roll (USR) inflationary stage.

After solving the equations of motion numerically, we plot the solutions. The total
number of e-foldings is set to ∆N = 60, and the end of the first stage of inflation
is defined by the time when ηΣΣ first crosses unity. It leads to an enhancement
in the scalar power spectrum. Inflation ends when ε = 1. With the chosen
parameters, the first stage lasts ∆N1 ≈ 50 e-foldings, whereas the second stage
lasts for ∆N2 ≈ 10: the first stage of inflation is represented by the blue shaded
region, whereas the second stage is marked by the green shaded region. The
length of the second stage is controlled by the parameter ζ for a given γ.
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The scalar potential of the gamma-model, delta =0
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The solution, trajectory, Hubble function, e-foldings, and slow roll parameters



The observables and the parameter space

We computed the inflationary (CMB) observables as

ns ≈ 0.9600 and rmax ≈ 0.004 , (1)

corresponding to the pivot scale k60 (wavenumber) that leaves the horizon 60 e-
folds before the end of inflation.
The parameters leading to a scalar potential with the desired properties are not
unique, and for any γ greater than ∼ 0.004 there is a value of ζ that leads to a
similar shape of the potential (with two inflection points, unique Minkowski mini-
mum, etc.). For a given γ, one can solve the system of equations

∂ϕV = ∂σV = H = 0 , (2)

where H is the Hessian determinant of the potential, in order to obtain the value of 
ζ leading to the desired inflection points. Then, by fine-tuning ζ around that value, 
one can change a duration of the USR stage ∆N2.
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Our computational methods and strategy

We numerically computed the power spectrum of curvature perturbations by using 
the transport method (Mulryne, 2009-2010) with the Mathematica package of Dias 
(2015), around the pivot scale k∗ that leaves the horizon at the end of the first

stage, i.e. ∆N2 e-folds before the end of inflation (let us call this scale k∆N2
). 

The inflaton mass was adjusted in each case around ∼ 10−5MPl by requiring 
Pζ ≈ 2 × 10−9 for the mode k60, first studying various values of γ (at fixed
∆N2), and then various values of ∆N2 for some values of γ.

∆N2 10 20 23 26
ns 0.96 0.95 0.945 0.94

rmax 0.004 0.007 0.008 0.009
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Power spectrum at ∆N2 = 10 for various values of γ
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Power spectrum at γ = 0.1 (left) and γ = 1 (right) with changing ∆N2
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PBHs masses in the γ-model

The mass of a PBH created by late-inflationary overdensities was estimated by
Pi, Zhang, Huang and Sasaki in arXiv:1712.09896:

MPBH � M2
Pl

H(tpeak)
exp

[
2(Nend −Npeak) +

∫ t60
tpeak

ε(t)H(t)dt

]
, (1)

where tpeak is the time when the wavenumber corresponding to the power spec-
trum peak (kpeak) exits the horizon, whereas t60 is the time when k60 exits the
horizon (the beginning of observable inflation). By using this equation, we esti-
mated the values of MPBH for various values of ∆N2 in our model:

∆N2 10 20 23 26

MPBH, g 108 1016 1019 1021

ns 0.96 0.95 0.945 0.94
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Comments about the PBHs masses

Our estimates are universal across the values of γ = 0.1,1,10,100. PBHs
with masses smaller than ∼ 1016g would have already evaporated by now via
Hawking radiation. Thus, we require ∆N2 > 20. On the other hand, the lower
3σ limit on the spectral index, ns ≈ 0.946, requires ∆N2 < 23, so that viable
PBH masses are restricted by O(1016g) < MPBH < O(1019g) even before
considering observational constraints on PBHs masses.

As regards the constraints on γ, the obtained power spectrum tells us for ∆N2 >

20 that it is sufficient to have γ � O(1) in order to produce the required enhance-
ment in the spectrum.
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PBHs density fraction

We numerically estimated the PBHs density fraction by using Press-Schechter
(1973) formalism. The useful formulae include the PBH mass M̃PBH(k), the
production rate βf(k), and the density contrast σ(k) coarse-grained over k:

M̃PBH � 1020
(
7× 1012

k Mpc

)2
g , βf(k) � σ(k)√

2πδc
e
− δ2c

2σ2(k) , (2)

σ2(k) =
16

81

∫
dq

q

(
q

k

)4
e−q2/k2Pζ(q) .

We have chosen the Gaussian window function for the density contrast, and have
introduced δc is a constant representing the density threshold for PBH formation.
According to Carr (1975), the naive estimate is δc ≈ 1/3, while its more precise
value depends upon details of the power spectrum. Then the PBHs-to-DM density
fraction is

ΩPBH(k)

ΩDM
≡ f(k) � 1.4× 1024βf(k)√

M̃PBH(k)g
−1

. (3)
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Comparison with observations based on Carr et al. (2020), in gamma-model
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Comments on the comparison

The PBHs fraction was obtained with the parameters γ = 1, ∆N2 = 22, and
δc = 0.275 (black curve). The shaded regions represent the observational
constraints: from evaporation (red), lensing (purple), various dynamical effects
(green), accretion (light blue), large-scale structure (dark blue), CMB distortions
(orange), and background effects (grey). In the relevant regions, the notation F,
WD, and NS is used to refer to femtolensing, white dwarfs, and neutron stars,
respectively.

We choose the scale k60 to represent the largest observable scale today, which
is around 10−4 Mpc−1. Our numerical evaluation shows, in order to obtain a
substantial density fraction, we need a relatively small δc.

Our peak overlaps with the constraints coming from observations of white dwarfs
and neutron stars.
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Comments about the δ-model vs. the γ-model

The scalar potential has only a single valley. The trajectories of solutions, Hubble 
functions, e-folding numbers and the slow-roll parameters are similar, as well as 
the power spectra, albeit with larger δc > 1/3, and larger PBHs masses (up to 
1023 g).
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Comparison with observations (Carr et al. 2020) in the δ-model
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The PBH  density  fraction in the models with γ=1, δ=0, ΔN_2=22.45 (solid 
line), and δ=0.58 , ΔN_2=23.36 (dotted line). In both cases  f_total=1.  
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Conclusion

• Starobinsky inflationary model is not only the best phenomenological fit to
CMB observations but also is an important theoretical insight into physics of the
early Universe and quantum gravity, namely, via the importance of the R2 term.
This claim is supported by supergravity theory.

• In particular, Higgs inflation is equivalent to Starobinsky inflation. In (stan-
dard) Einstein supergravity, both can appear in two different supersymmetric gauges
of a single (new-minimal) supergravity model.

• The (old-minimal) supergravity extension of (R + R2) gravity is capable
to describe both Starobinsky inflation and PBHs production (as a two-field double
inflation) without adding matter d.o.f., i.e. by using a supergravity multiplet of fields
and its (supergravitational) interactions only.

• The modified supergravity approach to inflation and PBHs production can
be reformulated to the standard (Einstein) supergravity form with the specific (no-
scale) Kähler potential K and superpotential W .
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Outlook towards string theory

There are several non-trivial indications towards the existence of UV-completion
of the proposed modified supergravities in superstring theory because of

• the appearance of the no-scale Kähler potential in modified supergravity,
which generically arises in superstring compactifications (John Ellis et al. since
1985; S.J. Gates Jr. and SVK 2009);

• the existence of the Dirac-Born-Infeld-type extensions of our single-field-
inflationary models in supergravity, which do not significantly alter observational
constraints on inflation and PBHs production (H. Abe, S. Aoki, Y. Aldabergenov
and SVK, arXiv:1808.00669 and 1812.01297);

• a possibility of interpreting our modified supergravity actions as parts of a
D3-brane world-volume actions in type II strings (Binetruy, Dvali, Kallosh and Van
Proeyen 2004; Aoki, Aldabergenov and SVK, arXiv:2001.09574).
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Outlook towards observations

The exploration of cosmological predictions from modified supergravity provides
a remarkable bridge between quantum gravity on one side and phenomenology
of inflation and PBHs on the other side.

• PBHs formation necessarily leads to Gravitational Waves (GWs) because
large scalar overdensities act as a source for GWs background. Frequencies of
those GWs can be directly related to expected PBHs masses and duration of the
second stage of inflation.

• Those GWs may be detected in the future ground-based experiments, such
as the Einstein telescope and the global network of GWs interferometers including 
advanced LIGO, Virgo and KAGRA, as well as in the space-based GWs interfer-
ometers such as LISA (or eLISA), TAIJI (old ALIA), and DECIGO.
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The density of stochastic gravitational waves induced by the power spectrum 
enhancement in the our supergravity models (solid+dashed+dotted black curves) 
against the expected sensitivity curves of the space-based GW interferometers.
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