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Stellar Evolution



From Beginning till End
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Collapse of a Star           Compact Objects
White Dwarf

Neutron Star

Black Hole

Compact Objects
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Classification

Stars are classified by:
• size
• mass
• luminosity
• colour
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Neutron Star

If the collapsing stellar core at

the center of a supernova

contains between 1.5 and 3 solar

masses, the collapse continues

until electrons and protons

combine to form neutrons,

producing a neutron star.
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• Gravitational pull is balanced
by neutron degeneracy
pressure.

• Most dense object after the
black hole.

• A cubic meter of a neutron
star would weigh around 400
billion tonnes.

2/19/2020

A star the size 
of a city with mass 

more than that 
of the sun.
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Link to Early Universe

The detection of strontium in GW170817 merger

suggests the presence of heavier elements within neutron

stars. Thus, cores of neutron or quark stars are like

fossils which allow us to peek back in time to the

beginning of everything.
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The environment in the core of neutron stars is so

extreme that rules of nuclear physics may change

leading to the formation of quark matter.

Quark Matter
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Structure of Matter
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• Building blocks of other particles.

• Confined particles never found in isolation.
• The energy spent to separate quarks gives rise to new quarks.

Quarks

Figure: Inseparability of quarks in spite of spending more energy.

Quark
Quark
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• There are six types of quarks known as up, down, strange,

charm, top and bottom.

• Up and down quarks have the lowest masses of all quarks and

are generally stable.

• Strange, charm, bottom and top quarks can only be produced

in high energy collisions.
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Quark Star

• A hypothetical compact star.

• Protons and neutrons deconfine in the core of a neutron

star due to high temperature and extreme pressure

leading to a bath of quarks.

• Density is much higher than a neutron star.

• Masses of quark stars lie between 3 to 5 solar masses.
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• Perfect fluid

• Anisotropic fluid

𝑇𝑇𝛾𝛾𝛾𝛾 = 𝜌𝜌 + 𝑝𝑝 𝑢𝑢𝛾𝛾𝑢𝑢𝛾𝛾 + 𝑝𝑝𝑔𝑔𝛾𝛾𝛾𝛾 .

𝑇𝑇𝛾𝛾𝛾𝛾 = (𝜌𝜌 + 𝑝𝑝⊥)𝑢𝑢𝛾𝛾𝑢𝑢𝛾𝛾 − 𝑝𝑝⊥𝑔𝑔𝛾𝛾𝛾𝛾 + (𝑝𝑝𝑟𝑟 − 𝑝𝑝⊥) 𝑢𝑢𝛾𝛾𝑢𝑢𝛾𝛾.
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• The relation between state determinants (density,

pressure, etc.).

• Characterizes the state of matter under a given set of

physical conditions.

Equation of State
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MIT Bag Model

The equation of state is given as

𝑝𝑝𝑟𝑟 =
1
3
𝜌𝜌 − 4𝔅𝔅 .

Different values of the bag constant represent

different scenarios.
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The Bag Constant

• The range of 𝔅𝔅 for massless strange quarks is

58.9−91.5𝑀𝑀𝑀𝑀𝑀𝑀/𝑓𝑓𝑚𝑚3 [Farhi, E. and Jaffe, R.L.: Phys. Rev. D

30(1984)2379].

• For massive quarks, 𝔅𝔅 lies within the range

56−78𝑀𝑀𝑀𝑀𝑀𝑀/𝑓𝑓𝑚𝑚3[Stergioulas, N.: Living Rev. Relativ. 6(2003)3].
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• However, larger values have also been suggested for the bag

constant. Xu et al. [Chin. J. Astron. Astrophys. 3(2003)33.] proposed that

for an MIT bag model with𝔅𝔅= 60𝑀𝑀𝑀𝑀𝑀𝑀/𝑓𝑓𝑚𝑚3, 110𝑀𝑀𝑀𝑀𝑀𝑀/𝑓𝑓𝑚𝑚3, the

star LMXB EXO 0748-676 can be treated as a candidate for strange

star.

• Experimental data of CERN-SPS and RHIC also allows a wider

range of values for the bag constant [Rahaman, F. et al.: Eur. Phys. J. C

72(2012)2071; Kalam, M. et al.: Int. J. Theor. Phys. 52(2013)3319].
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Gravitational Redshift

Properties of Compact Objects

If the energy of the

photon decreases, the frequency

also decreases. This corresponds

to an increase in the wavelength of

the photon, or a shift to the red

end of the electromagnetic

spectrum – hence the

name: gravitational redshift.
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The gravitational redshift of a dense compact object is

calculated as

𝑍𝑍 =
1

1 − 2𝑢𝑢(𝑟𝑟)
− 1,

where 𝑢𝑢 𝑟𝑟 = 𝑚𝑚
𝑟𝑟

is the compactness factor.

2121Properties of Compact Objects



Buchdahl [Phys. Rev. D 116(1959)1027.] calculated the

upper limit of mass to radius ratio as

𝑚𝑚
𝑟𝑟

< 4
9
,

which implies that the upper limit of gravitational

redshift is [Ivanov, B.V.: Phys. Rev. D 65(2002)104011.]

𝑍𝑍 < 5.211.
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Equilibrium

A condition of a system when neither its state of motion

nor its internal energy changes under the action of

external forces.
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Stellar Equilibrium
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Stability

In a stable system, a small disturbance will fade away,

i.e., the system will stay in, or return to,

the equilibrium position.
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Checking Stability

• Causality Condition
• Herrera’s Cracking Approach
• Adiabatic Index
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Causality Condition

The speed of sound in a medium depends on how quickly

vibrational energy can be transferred through the medium. For

a stable structure, the speed of sound must be less than the

speed of light.
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Cracking appears whenever the radial force directed

inward in the inner part of the sphere changes its sign

beyond some value of the radial coordinate [Herrera, L.:

Phys. Lett. A 165(1992)206].

Herrera’s Cracking Approach

Properties of Compact Objects 28



Based on the concept of cracking and causality

condition, Abreu et al. [Class. Quantum Gravit.

24(2007)4631.] obtained another condition of stability as

0 < |𝑣𝑣⊥
2 − 𝑣𝑣𝑟𝑟2| < 1.
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Junction Conditions

The matching of matter to empty space at the boundary

of a star must be smooth. For this purpose, the

following conditions must be satisfied at the

hypersurface (Σ)

[𝑑𝑑𝑠𝑠2−]Σ= [𝑑𝑑𝑠𝑠2+]Σ, [𝐾𝐾𝑖𝑖𝑖𝑖_]Σ= [𝐾𝐾𝑖𝑖𝑖𝑖+]Σ.
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Self-interacting Brans-Dicke
Theory



Mach’s Principle

The inertial forces observed locally in an accelerated

laboratory may be interpreted as gravitational effects

having their origin in distant matter accelerated relative

to laboratory.
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Theory of General Relativity

𝐺𝐺𝛾𝛾𝛾𝛾 = ℜ𝛾𝛾𝛾𝛾 −
1
2
ℜ𝑔𝑔𝛾𝛾𝛾𝛾 + Λ𝑔𝑔𝛾𝛾𝛾𝛾 =

8π𝐺𝐺
𝑐𝑐4

𝑇𝑇𝛾𝛾𝛾𝛾 .
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Dirac’s Large Numbers Hypothesis

Relationship between ratios of size scales in

the universe to that of force scales which yield very large

dimensionless numbers.
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Relation between inertial forces and the overall mass

distribution holds if

𝐺𝐺𝑀𝑀
𝑅𝑅

≈ 1.
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The Expanding Universe

In 1929, Edwin Hubble

discovered that the

farther a galaxy is the

faster it recedes from

us.
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M Mass of the visible universe.

R Radius of the observable universe. 

Hence, G is not a constant but varies from time to 
time.

Self-interacting Brans-Dicke Theory 37



Brans-Dicke Theory

In 1961, Brans and Dicke introduced a scalar-tensor theory

by representing the reciprocal of varying gravitational

constant through a scalar field Φ . The scalar field is

coupled to matter as well as gravity through a coupling

parameter (𝜔𝜔𝐵𝐵𝐵𝐵).
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Self-interacting Brans-Dicke Theory

• Low values of coupling parameter are used to describe

cosmic inflation [Weinberg, E.J.: Phys. Rev. D 40(1989)3950].
• For weak field situations, the value of coupling

parameter must be greater than 40,000 [Will C.M.: Living

Rev. Rel. 4(2001)4.] and deviations from general relativity
are insignificant.

Self-interacting Brans-Dicke Theory 39



The action of self-interacting Brans-Dicke (SBD) theory is

S=∫ −𝑔𝑔 ℜ𝜍𝜍 − 𝜔𝜔𝐵𝐵𝐵𝐵
𝜍𝜍
𝜕𝜕𝛾𝛾𝜍𝜍𝜕𝜕𝛾𝛾𝜍𝜍 − 𝑀𝑀 𝜍𝜍 + 𝐿𝐿𝑚𝑚 𝑑𝑑4𝑥𝑥.

Self-interacting Brans-Dicke Theory

Self-interacting Brans-Dicke Theory
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Field Equations:

Wave Equation:

where

𝜍𝜍 = 𝑇𝑇(𝑚𝑚)

3+2𝜔𝜔𝐵𝐵𝐵𝐵
+ 1

3+2𝜔𝜔𝐵𝐵𝐵𝐵
(𝜍𝜍 𝑑𝑑𝑑𝑑(𝜍𝜍)

𝑑𝑑𝜍𝜍
− 2𝑀𝑀(𝜍𝜍)),

𝐺𝐺𝛾𝛾𝛾𝛾 = 𝑇𝑇𝛾𝛾𝛾𝛾
(eff)

= 1
𝜍𝜍

(𝑇𝑇𝛾𝛾𝛾𝛾
(𝑚𝑚)

+ 𝑇𝑇𝛾𝛾𝛾𝛾
𝜍𝜍

),

Self-interacting Brans-Dicke Theory

𝑇𝑇𝛾𝛾𝛾𝛾
𝜍𝜍

=𝜍𝜍,𝛾𝛾;𝛾𝛾 − 𝑔𝑔𝛾𝛾𝛾𝛾 𝜍𝜍 + 𝜔𝜔𝐵𝐵𝐵𝐵
𝜍𝜍

𝜍𝜍,𝛾𝛾𝜍𝜍,𝛾𝛾 −
𝑔𝑔𝛾𝛾𝛾𝛾𝜍𝜍𝛼𝛼𝜍𝜍𝛼𝛼

2
− 𝑑𝑑 𝜍𝜍

2
𝑔𝑔𝛾𝛾𝛾𝛾 .
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Gravitational Decoupling Scheme



𝑇𝑇𝛾𝛾𝛾𝛾
𝜎𝜎 = 0 𝜎𝜎 ≠ 0

Gravitational Decoupling Scheme

Gravitational Decoupling

𝑇𝑇𝛾𝛾𝛾𝛾 + 𝜎𝜎Θ𝛾𝛾𝛾𝛾
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Add a new gravitational source in the original energy-
momentum tensor.

Deform the radial metric potential to decouple the 
field equations into two sets.

• The first set corresponds to the original source.
• The second set relates to the new source.

Assume a known solution for the first set.
Find a solution of the second set.

Combine solutions of both sets to obtain a new 
solution.

Scheme

Gravitational Decoupling Scheme 44



Minimal Geometric Deformation

• It only deforms the radial metric potential by leaving

temporal component unchanged.

• It works as long as the interaction between the matter

sources is purely gravitational.

Gravitational Decoupling Scheme 45



• The metric co-efficients must be positive and

monotonically increasing.

• The physical parameters ( 𝜌𝜌 , 𝑝𝑝𝑟𝑟 , 𝑝𝑝⊥ ) must be

maximum at the center and monotonically decreasing

towards the boundary.

• Radial pressure must be zero at the boundary.

2/19/2020 Properties of Compact Objects

Physical Acceptability Conditions
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• The anisotropy (△= 𝑝𝑝⊥ − 𝑝𝑝𝑟𝑟) must be zero at the center.

• Following energy conditions must be satisfied.

 Weak Energy Condition: 𝜌𝜌 + 𝑝𝑝𝑟𝑟 ≥ 0, 𝜌𝜌 + 𝑝𝑝⊥ ≥ 0.

 Null Energy Condition: 𝜌𝜌 ≥ 0, 𝜌𝜌 + 𝑝𝑝𝑟𝑟 ≥ 0, 𝜌𝜌 + 𝑝𝑝⊥ ≥ 0.

 Strong Energy Condition: 𝜌𝜌 + 𝑝𝑝𝑟𝑟 ≥ 0, 𝜌𝜌 + 𝑝𝑝𝑟𝑟 + 2𝑝𝑝⊥ ≥ 0.

 Dominant Energy Condition: 𝜌𝜌 − 𝑝𝑝𝑟𝑟 ≥ 0, 𝜌𝜌 + 𝑝𝑝⊥ − 0.

2/19/2020 Properties of Compact ObjectsGravitational Decoupling Scheme 47



Decoupled Solutions in Self-
interacting Brans-Dicke Theory 



Spherical Spacetime

The line element describing a static sphere is given by

The matter distribution describing the internal
configuration of the spherical structure is

.
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The field equations are obtained as

50



where
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The wave equation reads

The potential function is chosen as

.
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Apply the MGD technique through the transformation

where 𝜈𝜈(𝑟𝑟) is the deformation function that governs the

translation in the radial metric component. The temporal

metric potential remains unchanged.

Transformations

.
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The first set corresponds to 𝜎𝜎 = 0 and exclusively describes the
isotropic configuration as

Decoupling
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The second set containing evolution equations for the anisotropic
source is given as

55



The conservation of isotropic matter distribution is represented by the
equation

Whereas the divergence of the additional source leads to

Conservation of Mass and Energy

56
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We extend Tolman V solution [Phys. Rev. 55(1939)364.]

to anisotropic domain. Tolman V spacetime is defined as

where n, F and B are unknown constants with 𝑊𝑊
= 2(1+2𝑛𝑛−𝑛𝑛2)

1+𝑛𝑛
.

Isotropic Solutions
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The energy density and pressure of the anisotropic

analogue of Tolman V are expressed as

59



where and 

.
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The unknown constants are evaluated through matching with 

Schwarzschild spacetime as

61
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MIT Bag Model

In order to determine the deformation function, we apply the bag 
model on the system which yields the following differential equation 

which is numerically solved along with the wave equation subject to 
central conditions (𝜍𝜍 0 = 0.2, 𝜍𝜍′(0) = 0 and 𝜈𝜈 0 = 𝜈𝜈𝑐𝑐) for three stars: 
PSR J1614-2230, Her X1 and 4U 1608-52 
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Case I: Linear Equation of State

64



Extended Tolman V Solution
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Concluding Remarks



We have formulated an anisotropic model for strange quark star 

through MGD technique in SBD gravity.

• Anisotropy has been induced in the isotropic matter configuration 
by means of an additional source.

• The two sources (seed and additional) have been decoupled 
through a linear transformation of the radial metric component.

• We have considered Tolman V spacetime as a solution for
the array corresponding to the isotropic source.

• The second system has been solved by imposing MIT bag model 
on state variables.
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• We have numerically evaluated the wave equation for
𝑀𝑀 𝜍𝜍 = 1

2
𝑚𝑚𝜍𝜍

2
𝜍𝜍2, 𝑚𝑚𝜍𝜍 = 0.001 and 𝜎𝜎 = 0.2, 0.9.

• The physical behavior of the extended model has been

examined for 𝔅𝔅 = 60𝑀𝑀𝑀𝑀𝑀𝑀/𝑓𝑓𝑚𝑚3 through energy

constraints as well as causality and cracking approaches

for the stars Her X-1, PSR J1614-2230 and 4U 1608-52.

• The strange star structure formulated via decoupling is

physically realistic and stable in the presence of a

massive scalar field.
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