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Abstract: Teaching and learning QM at high-school as well as undergraduate level is a highly non 

trivial task. Indeed major changes are required in understanding the new physical reality, and stu-

dents have to deal with counterintuitive concepts such as uncertainty and entanglement and ad-

vanced mathematical tools. In order to overcome these critical issues a simple approach is here pre-

sented, which is based only on 2-vectors and 2x2 matrix algebra. As a further bonus, it could make 

also possible to fill the gap between high school curricula and the actual scientific and technological 

advances in physics by allowing students to gain some insight into topics such as qubits and quan-

tum computers. The inspiring source of our proposal, as well as its firm theoretical foundation, can 

be found in the famous Umdeutung (reinterpretation) paper by W. Heisenberg, which introduces 

QM in matrix form. 
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1. Introduction 

At high school as well as undergraduate level, Quantum Mechanics (QM) is usually 

introduced through an overview of the main crucial experiments and theoretical attempts 

which took place at the beginning of 20-th century. Even if retracing the historical path 

which led to the introduction of the new conceptual and mathematical framework has 

undoubted advantages, there are also significant drawbacks, mainly in contexts, such as 

a high school, where students' lack of advanced mathematical tools puts severe con-

straints to the understanding of quantum concepts.  

On the other hand, QM implies major changes in understanding the world and the 

physical reality. Introducing concepts such as probability, uncertainty and superposition, 

and discussing issues such as non locality and entanglement, is a highly non trivial task. 

Students have to face with a matter, which is counterintuitive and in conflict with the 

usual classical view of the physical world [1]. In this respect, high school students' diffi-

culties in accepting nondeterminism have been recently recognized [2] to induce a fall 

back to classical reasoning and a subsequent misunderstanding of the concept of quantum 

states. Last but not least, the introduction of wave functions and Schroedinger equation, 

even for the simplest paradigmatic examples of infinite square well and harmonic oscil-

lator, implies the solution of second order ordinary differential equations, which are usu-

ally beyond high school standard students' knowledge in calculus.  

All the above considerations lead us to think that a better strategy could be to con-

centrate the attention to two-level systems, which live in a finite dimensional Hilbert 

space. That allows us to introduce, from the very beginning, a simple 2х2 matrix formu-

lation of QM, where quantum states are identified with 2-vectors belonging to a finite 

vector space and observables are 2х2 matrices. In this way students have the possibility 

to become familiar with the unique conceptual issues of QM, such as superposition prin-

ciple, non locality and entanglement without an advanced mathematical background. 
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That could make also possible to fill the gap between high school curricula and the actual 

scientific and technological advances in physics by allowing students to have a glimpse 

to modern research topics. In fact two-level systems, under the name of qubits, are the 

basic building blocks of quantum information and computation. Furthermore, our pro-

posal could be envisaged as a useful supplement to game based and simulation teaching 

strategies [3,4].  

According to the above considerations, two-level systems look like ideal candidates 

to introduce QM to advanced high-school students. But the other side of the coin is that 

two-level systems are more tightly linked with the notion of an operator acting on a state 

and of eigenvalue equations. Thus teachers have to justify the formalism, in particular 

they should be able to explain why observables are operators (matrices) acting on states 

and, finally, why measured quantities are identified with eigenvalues of such matrices. 

Our idea is to look for a motivation in history of physics. In the specific case we find a firm 

basis for our proposal in Heisenberg’s seminal paper of 1925 [5], the so called Umdeutung 

paper, which gives the first recognition of the role of matrices in quantum physics. The 

aim of Heisenberg paper is to set up quantum theory by building only on observables 

quantities. In fact he provided calculational rules for computing transition frequencies be-

tween stationary states, without reference to unobservable characteristics of such states. 

These rules were later identified by Born and Jordan [6,7] as matrix operations, while ma-

trices being representations of operators in the basis of eigenvectors of the Hamiltonian 

[8]. 

Advantages of Heisenberg’s approach in undergraduate teaching have been already 

put forward by some authors [9-11], but the possibility of using it for advanced high 

school teaching hasn’t been explored yet. Our work aims at filling this gap. The stage for 

studying two-level systems may be set by following Heisenberg’s line of reasoning. Man-

datory prerequisite is a basic historical introduction to quantum physics, which includes 

standard topics such as Planck’s hypothesis, the photoelectric effect and Bohr’s model of 

hydrogen atom [12]. A detailed analysis of Heisenberg’s paper [5] is beyond the scope of 

this work but one of its inspiring points, which we assume as a starting point of our pro-

posal, is Bohr’s postulate that the frequencies of emitted radiation were proportional to 

energy differences between two stationary states, not to the orbital frequencies of the elec-

trons (as within classical physics). As a consequence in QM we deal with physical quanti-

ties, which depend on two states rather than one. This leads naturally to the introduction 

of matrices.  

The net result of our study is a novel teaching-learning sequence on QM properly 

designed for advanced high-school students and very useful also for in-service and pre-

service teacher training.  

2. Introducing operators (matrices): basic steps 

In this Section we set the theoretical basis of our proposal by recalling Bohr’s postu-

late and then describing Heisenberg’s key ideas in a form suitable to high-school students. 

We stress main logical steps and discuss a simple example: an harmonic oscillator. By 

further simplifying, we are led to a toy model with only two levels, a ground state and an 

excited one, described in terms of 2-vectors and 2x2 matrices.  

2.1. Bohr’s atomic model 

As well known, one of Bohr’s postulates [12] includes the hypothesis that an atom 

can be in one of a series of stationary states, each of which corresponds to a discrete value 

of energy. While an electron is in one of these states, its energy does not vary, while it can 

radiate by going from a given state to another one with lower energy, according to the 

fundamental relation: 

��� =
�� − ��

ℎ
 ,        �� > ��. (1)
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Thus frequencies are guaranteed to obey the Rydberg-Ritz combination principle:  

 

��� = ��� + ��� ,   (2)
 

which is experimentally observed. This notation associates to each frequency two indices, 

one for the starting state of the electron and one for the arriving state. 

2.2. Heisenberg’s original argument 

Two main ideas led Heisenberg to matrix mechanics [5]. First, the recognition that at 

the atomic scale classical mechanics is not valid any more. Second, the correspondence 

principle must be valid, and in fact in Heisenberg’s approach, each quantum equation has 

a classical corresponding formula. 

The starting point is the consideration that in the quantum realm only transitions 

between states are observable, hence physical quantities should be associated with two 

states, rather than one, and thus have two indices. Consider any dynamical quantity x(t), 

which could be for example the position of a particle; consider then its Fourier represen-

tation (for simplicity we limit ourselves to the case in which x is periodic; in the general 

case all the sums appearing in the following formulas are to be replaced with integrals):  

��(�) = � �������

��

����

 .   (3)

 

If x referred to a single quantum state, for instance a Bohr orbit, the Fourier coeffi-

cients �� would depend on the corresponding quantum number, i.e. �� = ��(�), with 

� = �(�) = 2��(�) being the corresponding angular frequency. However, single quan-

tum states are not observable, rather only transition processes associated with two states 

are. Hence, Heisenberg replaces ��(�) = �(�, � − �),  and �(�) = �(�, � − �),  with 

�(�, � − �) = 2���,���, and the resulting expression is:  

�(�) = � �(�, � − �)����(�,���)�

��

����

 .   (4)

 

This is the first “reinterpretation of kinematical relations” by Heisenberg and is sug-

gested by the correspondence principle, according to which quantities related with quan-

tum jumps between two states coincide with quantities related to single states in the limit 

of large quantum numbers. The next step is to represent in this way products of dynamical 

quantities, which is required for instance to write down energies. Hence, by generalizing 

the convolution theorem for Fourier series and transforms, Heisenberg argues that the 

most natural assumption is to represent the square of x(t) as  

��(�) = � �(�, � − �)����(�,���)�

��

����

 , (5)

 

where, according to the combination principle, �(�, � − �) = �(�, � − �) + �(� − �, � −

�), and  

�(�, � − �) = � �(�, � − �)�(� − �, � − �)

��

����

 . (6)

 

This is Heisenberg’s rule for multiplying transition amplitudes.  

 In his paper, Heisenberg proceeds by showing how to find transition amplitudes and 

frequencies from the dynamics of the system. In particular, he links the coefficients 

�(�, � − �) to Kramers’ dispersion formula [13-15] (which constituted his main inspira-
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tion, together with Born’s generalization to general systems [16]), which describes the in-

teraction of an atom with electromagnetic radiation, and to Planck’s constant h through a 

reformulation of Sommerfeld’s quantization condition. In this way he got the relation:  

ℎ = 4�� �{|�(� + �, �)|��(� + �, �) − |�(�, � − �)|��(�, � − �)}

�

���

 , (7)

 

which is nothing but the Thomas-Reiche-Kuhn sum rule [17, 18]. He then applies his for-

malism to a simple system, the anharmonic oscillator, where he can determine the ampli-

tudes and the frequencies by finding and solving some recursion relations which are sat-

isfied by them. The quantities�(�, � − �), and �(�, � − �), were recognized by Born [6] to 

be elements of (infinite-dimensional) matrices, since Eq. (6) is nothing but the row by col-

umn product of a matrix with elements ��� with itself. Thus, physical quantities in the 

Heisenberg scheme as reformulated in [6] correspond to infinite matrices. Moreover, in 

the same paper [6] Born and Jordan recognize that the allowed energies for a quantum 

system are given by the diagonal elements of the matrix representing the Hamiltonian, 

namely, its eigenvalues. 

2.3. A simple example: harmonic oscillator 

 Here the simple case of harmonic oscillator [19] is briefly discussed in order to show 

Heisenberg’s scheme at work in a concrete example, quite easy to be digested by advanced 

high-school students. 

 In general the problem can be rephrased in the following way: given a conservative 

force F(x) that binds the electron in an atom, find the quantum mechanical properties, 

frequencies ��� and amplitudes ���, associated with the transitions between stationary 

states. For a simple harmonic oscillator the force is �(�) = −��, so that the solution to the 

equation of motion �(�) = ��̈ is:  

�(�) = ������� , (8)
 

where a is the fundamental amplitude and �� = ��/� is the frequency. From Sommer-

feld’s quantization condition one easily gets ������ = �ℎ, which gives the allowed val-

ues of the vibration amplitude:  

 

�(�) = �
2ℏ�

���

 , (9)

 

while frequency is independent on n, i.e. �(�) = �� . Let’s now substitute amplitudes 

�(�)  into the classical energy function � =
�

�
���

���  and obtain the quantum energy 

spectrum:  

�� = �ℏ�� . (10)
 

There exists a single Fourier term (see Eq. (8)), so that only transitions between adja-

cent states, � → � − 1, are allowed. Finally, correspondence principle allows one to com-

pute the radiation frequency and the transition amplitudes from the expressions for �(�) 

and �(�) above obtained, getting:   

��,��� = ��, ��,��� = �
2ℏ�

���

 . (11)

 

These quantities, as Born and Jordan pointed out [6], are identified with elements of ma-

trices.  



The 1st Electronic Conference on Universe 5 of 7 
 

 The simple procedure here shown gives a strong motivation for identifying opera-

tors acting on a Hilbert space of quantum states with matrices. At this stage one is natu-

rally led to introduce, for the sake of simplicity, as a toy model a system built of only two 

levels, i. e. a ground state and an excited state, whose observables are described by 2x2 

matrices acting on two-component vectors. 

3. Results: playing with two-level systems 

In the previous Section we set the stage to outline the core of our teaching-learning 

sequence. The basic pillar of our proposal is the quantum two-state system, which may be 

introduced by making explicit reference to concrete physical examples (e.g. a single spin 

and a measurement apparatus or the polarization of a photon). Then, by taking the single 

spin system, an identification has to be made between the corresponding space of states 

and a two-dimensional vector space. This allows one to choose the two basis vectors 

|�〉 and |�〉 as two-component column vectors and to construct a general state as the vec-

tor which is a linear superposition of |�〉 and |�〉. The single quantum spin is an example 

of a large class of simple systems called qubits. Indeed a qubit is the basic building block 

of quantum information and computation, in much the same way as the bit, that is, a bi-

nary variable that constitutes the smallest piece of information, is the fundamental brick 

of classical information theory and current computer science.  

The subsequent step deals wth the introduction of physical observables, which are 

the object of measurement and are conveniently identified as 2х2 matrices within the same 

vector space. Within the single spin system, the matrix form of spin components can be 

simply derived and identified with Pauli matrices. Then average values of observables 

can be easily computed as well as eigenvalues and eigenvectors. 

The representation of quantum states and observables as vectors and matrices of a 

two-dimensional vector space gives the simple machinery upon which peculiar quantum 

mechanical features can be built up, such as mixed and entangled states in composite sys-

tems. 

It is now an easy task to illustrate uncertainty principle by making reference to two 

different components of the spin, as it applies to many pairs of measurable quantities and 

not only to position and momentum. In this way the deep meaning of a quantum meas-

urement process and its differences with the classical case can be pointed out. The next 

step is to show how to combine single spins to get composite systems. This amounts to 

introduce non locality issues, quantum correlations and entanglement, allowing one to 

gain some insight into unique quantum features.   

4. Discussion 

Our teaching-learning sequence has been implemented within various training ac-

tivities in QM held in a bunch of high schools in southern Italy, and aimed to teachers in 

physics and mathematics as well as to selected students attending the last year of a scien-

tific high school. Preliminary results, gathered by interviews as well as surveys filled by 

participants both before and after activities, lead us to make the following considerations. 

First, teachers and students have the possibility to become familiar with quantum 

issues such as entanglement and non locality without an advanced mathematical back-

ground and this is, indeed, an advantage. 

Second, it is possible to fill the gap between high-school curricula and the actual sci-

entific and technogical advances in physics (e.g. qubits, quantum computer, quantum tel-

eportation). This could lead to an increasing number of students, which may choose to 

undertake scientific university programs. 

Third, the proposal is also suitable within pre-service and in-service training pro-

grams for physics teachers. Indeed teachers appear much more interested in learning basic 

principles and practical teaching strategies then in deepening their knowledge of formal-

ism. 
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Finally, a promising strategy in physics education could be to shape teaching-learn-

ing proposals by relying on the historical path, which led to a concept, as well as on the 

social and philosophical contexts in which the concept itself developed. In this way sig-

nificant changes in teachers' and students' conceptions regarding the Nature of Science 

are expected. 

5. Conclusions  

A novel strategy is here presented, which allows to introduce peculiar features of QM 

at high school level without resorting to advanced mathematical tools. This non trivial 

task has been accomplished building upon vectors and matrices in a two-dimensional 

vector space. The inspiring source of our proposal, as well as its firm theoretical founda-

tion, can be recognized as the 1925 seminal paper by W. Heisenberg. which provides a 

simple calculational method to deal with quantum mechanical states and observables, 

based on the identification of the physical quantities of interest with transition frequencies 

and amplitudes. Indeed such frequencies and amplitudes form matrices. Preliminary re-

sults gathered among both high school teachers and students are encouraging and offer 

useful insights for further improvements.   Supplementary Materials: The following are 

available online at www.mdpi.com/xxx/s1, Figure S1: title, Table S1: title, Video S1: title. 
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