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Abstract

We study the growth of linear matter density perturbations in a modified gravity approach of scalar
field couplings with metric and torsion. In the equivalent scalar-tensor formulation, the matter fields in the
Einstein frame interact as usual with an effective dark energy component, whose dynamics is presumably
governed by a scalar field that sources a torsion mode. As a consequence, the matter density ceases to
be self-conserved, thereby making an impact not only on the background cosmological evolution but also
on the perturbative spectrum of the local inhomogeneities. In order to estimate the effect on the growth
of the linear matter perturbations, with the least possible alteration of the standard parametric form of
the growth factor, we resort to a suitable Taylor expansion of the corresponding exponent, known as the
growth index, about the value of the cosmic scale factor at the present epoch. In particular, we obtain an
appropriate fitting formula for the growth index in terms of the coupling function and the matter density
parameter. While the overall parametric formulation of the growth factor is found to fit well with the
latest redshift-space-distortion (RSD) and the observational Hubble (OH) data at low redshifts, the fitting
formula enables us to constrain the growth index to well within the concordant cosmological limits, thus
ensuring the viability of the formalism.

Keywords: Cosmological perturbations, dark energy theory, modified gravity, torsion, cosmology of theories
beyond the SM.

1 Introduction

The effect of the evolving dark energy (DE) on the rate of the large-scale structure (LSS) formation has
been a prime area of investigation in modern cosmology, particularly from the point of view of asserting the
characteristics of the respective DE component [1–5]. While the observations grossly favour such a component
to be a cosmological constant Λ [6–12], a stringent fine-tuning problem associated with the corresponding
model, viz. ΛCDM (where CDM stands for cold dark matter), has prompted extensive explorations of a
dynamically evolving DE from various perspectives. Moreover, certain observational results do provide some
scope of a plausible dynamical DE evolution, albeit upto a significant degree of mildness. In this context, it
is worth noting that however mild the DE dynamics may be, at the standard Friedmann-Robertson-Walker
(FRW) background cosmological level, there may be substantial effects of such dynamics on the spectrum of
the linear matter density perturbations. Hence, the analysis of the observational data on the evolution of
such perturbations, or the LSS growth data, is crucial for constraining dynamical DE models of all sort.
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Apart from the commonly known dynamical DE models involving scalar fields (such as quintessence,
kessence, and so on [13–21]), a considerable interest has developed in recent years on the cosmological sce-
narios emerging from scalar-tensor equivalent modified gravity (MG) theories [22–26] that stretch beyond the
standard principles of General Relativity (GR). Such scenarios are particularly useful for providing plausible
resolutions to the issue of cosmic coincidence which one usually encounters in scalar field DE models and in
the concordant ΛCDM model. One resolution of course comes from the consideration of plausible contact
interaction(s) between a scalar field induced DE component and the matter field(s) [1, 3, 27–47], which the
scalar-tensor formulations naturally lead to, under conformal transformations [48–57]. A DE-matter (DEM)
interaction makes the background matter density ρ(m)(z) drifting from its usual (dust-like) evolution with
redshift z, thereby affecting the drag force on the matter perturbations. The evolution of the matter density
contrast δ(m)(z) := δρ(m)(z)/ρ(m)(z) and the growth factor f(z) of the matter perturbations are therefore
not similar to those in the non-interacting models, in which the field perturbations decay out in the sub-
horizon regime, while oscillating about a vanishing mean value. Actually, the decaying nature persists in the
interacting scenarios as well, however with the oscillations about a value proportional to the amount of the
interaction, measured by the strength of the scalar field and matter coupling. As such, the field perturbations
contribute to the velocity divergences of the matter, affecting in turn the evolution of δ(m)(z) [3, 58]. Strik-
ingly enough, a DEM interaction can make the growth factor f(z) acquiring a value > 1 at large z, which
necessitates the modifications of the commonly known f(z) parametrizations in the literature [59–64], such

as the well-known parametrization f(z) =
[
Ω(m)(z)

]γ(z)
, where Ω(m)(z) is the matter density parameter and

γ(z) is the so-called growth index [60–72]. Our objective in this paper is to attempt such a modification and
demonstrate its utilization in constraining a DEM scenario emerging from a typical scalar-tensor equivalent
‘geometric’ alternative of GR, viz. the metric-scalar-torsion (MST) cosmological theory, formulated recently
by one of us (SS) [73–75], on the basis of certain considerations drawn from robust argumentations that have
been prevailing for a long time [76–80].

MST essentially forms a class of modified (or ‘alternative’) gravity theories that contemplates on the
appropriate gravitational coupling(s) with scalar field(s) in the Riemann-Cartan (U4) space-time geometry,
endowed with curvature as well as torsion. The latter being an inherent aspect of a general metric-compatible
affine connection, is considered as the entity that naturally extends the geometric principles of GR, not
only from a classical viewpoint, but also from the perspective a plausible low energy manifestation of a
fundamental (quantum gravitational) theory1. Nevertheless, conventional U4 theories (of Einstein-Cartan
type) are faced with a stringent uniqueness problem while taking the minimal couplings with scalar fields into
consideration [76–80]. Such couplings are simply not conducive to any unambiguous assertion of equivalent
Lagrangians upon eliminating boundary terms in the usual manner. The obvious wayout is the consideration
of explicit non-minimal (or, contact) couplings of the scalar field(s) with, most appropriately, the entire U4

Lagrangian given by the U4 curvature scalar R̃ [73]. For any particular non-minimal coupling of a scalar
field φ with R̃, the resulting (MST) action turns out to be equivalent to the scalar-tensor action, as the
trace mode of torsion, Tµ , gets sourced by the field φ, by virtue of the corresponding (auxiliary) equation
of motion. On the other hand, torsion’s axial (or, pseudo-trace) mode Aµ can lead to an effective potential,
for e.g. a mass term m2φ2 (with m = constant) in that scalar-tensor equivalent action, upon implementing
a norm-fixing constraint (AµAµ = constant) as in the Einstein-aether theories [151–153], or incorporating a
φ-coupled higher order term (AµAµ)2 [73]. Such a mass term is shown to play a crucial role in giving rise to a
viable cosmological scenario marked by a φ-induced DE component with a weak enough dynamical evolution
amounting to cosmological parametric estimations well within the corresponding observational error limits for
ΛCDM. This also corroborates to the local gravitational bounds on the effective Brans-Dicke (BD) parameter
w, which turns out to be linear in the inverse of the MST coupling parameter β [73].

Particularly intriguing is the MST cosmological scenario that emerges under a conformal transformation

1See the hefty literature on the vast course of development of the torsion gravity theories in various contexts, the physical
implications and observable effects of torsion thus anticipated, as well as searched extensively over several decades [80–150].
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from the Jordan frame to the Einstein frame, in which the effective DE component interacts with the cos-
mological matter (a priori in the form of dust). Nevertheless, the crude estimate of β (or of the parameter
s = 2β, that appears in the exact solution of the Friedmann equations), obtained under the demand of a
small deviation from the background ΛCDM evolution [73], requires a robust reconciliation at the pertur-
bative level. On the other hand, the methodology adopted here can in principle apply to any scalar-tensor
cosmological scenario, once we resort to the dynamics in the Einstein frame.

Now, the methodology of our analysis purports to fulfill our objective mentioned above. Specifically, we
take the following course, and organize this paper accordingly: in section 2, we review the basic tenets of MST
cosmology in the standard FRW framework, and in particular, the exact solution of the cosmological equations
in the Einstein frame that describes a typical interacting DE evolution. Then in the initial part of section 3, we
obtain the differential equations for δ(m)(z) and f(z), and get their evolution profiles by numerically solving
those equations for certain fiducial settings of the parameters s = 2β and Ω(m)

0
≡ Ω(m)

∣∣
z=0

. Thereafter,
in subsection 3.1, we resort to a suitable growth factor parametrization, demanding that an appropriate
expansion of the growth index γ(z) about the present epoch (z = 0) should adhere to the observational
constraints on the growth history predictions at least upto z ' 1 or so. Next, in subsection 3.2, we attain
the pre-requisites for the growth data fitting with the quantity fσ(8)(z), where f(z) is as given by its chosen
parametrization, and σ(8)(z) is the root-mean-square amplitude of matter perturbations within a sphere of
radius 8 Mph−1. Finally, in section 4, we estimate the requisite parameters s, Ω(m)

0
and σ(8)

0
≡ σ(8)

∣∣
z=0

,

and hence constrain the model by fitting fσ(8)(z) with a refined sub-sample of the redshift-space-distorsion
(RSD) data, and its combination with the observational Hubble data [176]. In section 5, we conclude with a
summary of the work, and an account on some open issues.

Conventions and Notations: We use metric signature (−,+,+,+) and natural units (with the speed of light
c = 1), and denote the metric determinant by g, the Planck length parameter by κ =

√
8πGN (where GN

is the Newton’s gravitational constant) and the values of parameters or functions at the present epoch by an
affixed subscript ‘0’.

2 MST Cosmology in the Einstein frame, and the emergent DEM inter-
acting scenario

As mentioned above, an intriguing scenario of an effective DEM interaction emerges from a typical scalar-
tensor equivalent MG formulation, viz. the one involving a non-minimal metric-scalar-torsion (MST) coupling,
in the Einstein frame [73]. Let us first review briefly the main aspects of such a formalism, and the emergent
cosmological scenario in the standard FRW framework.

Torsion, by definition, is a third rank tensor Tαµν which is anti-symmetric in two of its indies (µ and ν), be-

cause of being the resultant of the anti-symmetrization of a general asymmetric affine connection (Γ̃αµν 6= Γ̃ανµ),
that characterizes the four-dimensional Riemann-Cartan (or U4) space-time geometry. The latter however
demands the metric-compatibility, viz. the condition ∇̃αgµν = 0, where ∇̃α is the U4 covariant derivative

defined in terms of the corresponding connection Γ̃αµν . Such a condition leads to a lot of simplification in the

expression for the U4 curvature scalar equivalent, R̃, which is usually considered as the free U4 Lagrangian
in analogy with the free gravitational Lagrangian in GR, viz. the Riemannian (or R4) curvature scalar R.
Specifically, R̃ gets reduced to a form given by R , plus four torsion-dependent terms proportional to the
norms of irreducible modes, viz. the trace vector Tµ ≡ Tαµα, the pseudo-trace vector Aµ := εαβγµ Tαβγ and

the (pseudo-)tracefree tensor Qαµν := Tαµν + 1
3(δαµTν − δαν Tµ)− 1

6ε
α
µνσAα , as well as the covariant divergence

of Tµ [80]. In absence of sources (or the generators of the so-called canonical spin density), all the torsion
terms drop out, and hence the U4 theory effectively reduces to GR. The situation remains the same for
minimal couplings with scalar fields as well. However, such minimal couplings are themselves problematic,
when it comes to assigning the effective Lagrangian uniquely upon eliminating the boundary terms [76–80].
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An easy cure is to resort to distinct non-minimal couplings of a given scalar field φ, in general, with each of
the constituent terms in R̃ [80]. However, this implies the involvement of more than one arbitrary coupling
parameters, which may affect the predictability and elegance of the theory. Hence, it is much reasonable to
consider a non-minimal φ-coupling with the entire R̃, so that there is a unique (MST) coupling parameter
(to be denoted by β, say) [73].

Eliminating boundary terms, we obtain the auxiliary equation (or constraint) Tµ = 3φ−1∂µφ , which
implies that the (presumably primordial, and a priori massless) scalar field φ acts as a source of the trace
mode of torsion. Considering further, a mass term m2φ2 induced by torsion’s axial mode Aµ, via one of the
possible ways mentioned above (in the Introduction), we get the effective MST action2 [73]:

S =

∫
d4x
√
−g
[
βφ2

2
R− 1− 6β

2
gµν∂µφ∂νφ−

1

2
m2φ2 + L(m)(gµν , {ψ})

]
, (1)

which is nothing but the scalar-tensor action in presence of minimally coupled matter fields ({ψ}) described
by the Lagrangian L(m), in the Jordan frame.

Under a conformal transformation gµν → ĝµν =(φ/φ0)2gµν and field redefinition ϕ := φ0 ln (φ/φ0) , with
φ0 = (κ

√
β)−1 — the value of φ at the present epoch t = t0 , one obtains the Einstein frame MST action

Ŝ =

∫
d4x
√
−ĝ

[
R̂

2κ2
− 1

2
ĝµν∂µϕ∂νϕ− Λe−2ϕ/φ0 + L̂(m)(ĝµν , ϕ, {ψ})

]
, (2)

where R̂ is the corresponding (Ricci) curvature scalar, and κ =
√

8πGN denotes the gravitational coupling
factor3. The parameter Λ = 1

2m
2φ2

0
, which amounts to the effective field potential at t = t0 , and

L̂(m)(ĝµν , ϕ, {ψ}) = e−4ϕ/φ0 L(m)(gµν , {ψ}) , (3)

is the transformed matter Lagrangian, which depends on the field ϕ both explicitly as well as implicitly
(since gµν = gµν(ĝµν , ϕ)). It is in fact this ϕ-dependence which leads to the DEM interaction in the standard
cosmological setup, as we shall see below. Note also that, by definition, ϕ

∣∣
t=t0

= 0.

Dropping the hats (̂ ), we express the gravitational field equation and the individual matter and field
(non-)conservation relations in the Einstein frame as follows:

Rµν −
1

2
gµν R = κ2

[
T (m)
µν + T (ϕ)

µν

]
, (4)

∇α
(
gαν T (m)

µν

)
= −∇α

(
gαν T (ϕ)

µν

)
= − T

(m)∂µϕ

φ0

, (5)

where T
(m)
µν and T

(ϕ)
µν are the respective energy-momentum tensors for matter and scalar field and T (m) ≡

gµν T
(m)
µν denotes the trace of T

(m)
µν .

Considering the matter to be a priori in the form of a pressure-less fluid (viz. ‘dust’), we have in the

standard spatially flat FRW framework, T
µ (m)
ν = diag

[
−ρ(m), 0, 0, 0

]
, so that −T (m) = ρ(m) is just the

matter density, which is purely a function of the cosmic time t. Because of the interaction (5), the matter
density ceases to have its usual dust-like evolution (i.e. ρ(m)(t) 6∝ a−3(t), where a(t) is the FRW scale factor).
Nevertheless, the above Eqs. (4) and (5) are shown to be solvable in an exact analytic way, for the configuration

ϕ(t) = s φ0 ln [a(t)] , ρ(m)(t) ∝ a−(3+s)(t) , (6)

2Ignoring of course, any external source for the tensorial mode Qα
µν , which therefore vanishes identically. This is particularly

relevant to what we intend to study here, viz. a homogeneous and isotropic cosmological evolution in presence of torsion, which
is plausible only when the latter’s modes are severely constrained. One such constraint is Qα

µν = 0 [97].
3This can be actually be retrieved from the relationship κ = (φ/φ0)κeff(φ) , where κeff(φ) = (φ

√
β)−1 is the effective (running)

gravitational coupling one has in the Jordan frame.
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provided one sets the constant parameter s = 2β [73]. Consequently, the matter density parameter Ω(m)(a)
is expressed as

Ω(m)(a) :=
ρ(m)(a)

ρ(a)
=

(3− s) Ω(m)
0

a−(3−s)

3Ω
(m)
0 (a−(3−s) − 1) + (3− s)

, (7)

where ρ(a) is the total (or critical) density of the universe and Ω(m)
0

is the value of Ω(m) at the present epoch
(t = t0 , whence a = 1). Using the Friedmann and Raychaudhuri equations we can then express the Hubble
parameter and total EoS parameter of the system, respectively, as

H(a) :=
ȧ

a
= H0

(
1− s

3

)−1/2 [
Ω(m)

0
a−(3+s) +

(
1− s

3
− Ω(m)

0

)
a−2s

]1/2
, (8)

w(a) :=
p(a)

ρ(a)
= −1 + Ω(m)(a) +

2s

3
, (9)

where H0 = H(a = 1) is the Hubble constant, and p(a) denotes the total pressure. Note that in the
limit s → 0, the above equations reduce to the corresponding ones for ΛCDM. Therefore one can directly
estimate the extent to which the MST cosmological scenario can deviate from ΛCDM, by demanding that
such a deviation should not breach the corresponding 68% parametric margins for ΛCDM. This would in turn
provide an estimation of the parameter s, which has actually been carried out in [73], using the Planck 2015
and the WMAP 9 year results. The upper bound on s, thus obtained, is of the order of 10−2. Nevertheless, a
rather robust reconciliation is required from an independent analysis, for instance, using the RSD and H(z)
observations, which we endeavor to do in this paper.

3 Growth of matter density perturbations

In this section, we discuss the evolution of linear matter density perturbations in the deep sub-horizon regime
for the aforementioned Einstein frame background MST cosmological scenario. The perturbations can be
studied in the well-defined conformal Newtonian gauge. The metric in this gauge is given as [3]

ds2 = e2N [−(1− 2Φ)H−2dN2 + (1 + 2Φ)δijdx
idxj ] , (10)

where N := ln a(t) is the number of e-foldings, H is the conformal Hubble parameter and Φ is the Bardeen
potential. Note that we have taken the same potential Φ in both temporal and spatial part of the metric
under the assumption of a vanishing anisotropic stress.

The evolution of the matter density contrast δ(m) depends on the divergence or convergence of the peculiar
velocity ~vvv(m) via the perturbed continuity equation

dδ(m)

dN
= −θ(m) , where θ(m) := ∇ · ~vvv(m) . (11)

On the other hand, the Euler equation for matter perturbations is given by

dθ(m)

dN
= −

[
θ(m)

2

(
1− 3w − κ

√
2s

dϕ

dN

)
+ λ̂−2

(
Φ + κ

√
s

2
δϕ

)]
, (12)

where λ̂ ≡ H/k (with k being the comoving wavenumber), and

Φ ' 3

2
λ̂2Ω(m)δ(m) , and <δϕ>' 3λ̂2

√
s

2
Ω(m)δ(m) , (13)

considering only the mean value of δϕ, as it shows a damped oscillatory behavior in the sub-horizon regime.
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Φ and δϕ both being proportional to λ̂2, become negligible in the deep sub-horizon limit (λ̂2 � 1).
However, their contribution may not be negligible in the evolution of θ(m)(N), because of the λ̂−2 pre-factor
in the second term of Eq. (12). As a consequence, the DE perturbation δϕ which itself is negligible in the
sub-horizon regime (despite being scale-dependent) may, by virtue of its coupling with matter, lead to a
significant effect on the growth of matter density perturbations.

Eqs. (9), (11) and (12) yield the second-order differential equation

dδ(m)

dN
+

[
2(1− s)− 3Ω(m)

2

]
dδ(m)

dN
=

3(1 + s)

2
Ω(m)δ(m) , (14)

which can be reduced to the following first-order differential equation:

df

dN
+ f2 +

[
2(1− s)− 3Ω(m)

2

]
f =

3(1 + s)

2
Ω(m) , (15)

by defining the so-called growth factor f(N) := d[ln δ(m)]/dN [154–158]. Due to the pre-factor (1 + s) in the
r.h.s. of Eq. (15), the function f(N) can cross the unity barrier at high redshifts (whence Ω(m) → 1). This
is illustrated in Fig. (1a), where we have plotted f(z) for a fixed Ω(m)

0
= 0.3 and certain fiducial values of

s, including s = 0 (the ΛCDM case). Fig. (1b), on the other hand, depicts the evolution of δ(m)(z), which
tends to increase with s for a fixed Ω(m)

0
= 0.3.

s = 0.00

s = 0.01

s = 0.02

0 1 2 3 4 5

0.6

0.7

0.8

0.9

1.0

z

f (z)

Ω0

(m)= 0.3

(a) Growth factor evolution for fiducial Ω(m)
0

and s.

s = 0.00

s = 0.01

s = 0.02

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

z

δ(m)(z)

Ω0

(m)= 0.3

(b) Density contrast evolution for fiducial Ω(m)
0

and s.

Figure 1: Functional variations of the growth factor and the matter density contrast, f(z) and δ(m)(z) respectively, in the
redshift range z ∈ [0, 5], for certain fiducial parametric settings, viz. Ω(m)

0
= 0.3 (fixed) and s = 0, 0.01, and 0.02.

3.1 Growth factor parametrization

As mentioned earlier, following the well-known prescription of [59, 60] we may consider parametrizing the
growth factor f(z) as [Ω(m)(z)]γ(z). However, such a parametrization does not explain the crossing of f(z)
from < 1 to > 1 at large-redshifts, as illustrated in Fig. (1a). More precisely, this parametrization f(z) always
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restricted within the range [0, 1] at all redshifts which in our case is not true. So to alleviate this limitation,
we propose the ansatz:

f(z) = (1 + s)
[
Ω(m)(z)

]γ(z)
, (16)

which evidently implies f(z) approaching 1 + s at large redshifts (whence Ω(m) → 1). Now, to determine the
growth rate of matter perturbations from Eq. (16), it is necessary to find a suitable functional form of γ(z).
In particular, choosing to express the growth index as a function of the scale factor a, we in this paper resort
to the following truncated form of its Taylor expansion about a = 1 (which corresponds to the present epoch):

γ(a) = γ0 + γ1 (1− a) , with γ0 , γ1 := constants , (17)

as in [62,70]. Note that this parametrization is valid atleast upto a redshift z ' 1 and is therefore suitable for
the analysis using the RSD observational dataset [159–161], as most of the data points in that set lie within
z = 1. In fact, it is rather convenient for us to re-write Eq. (17) as

γ(N) = γ0 + γ1(1− eN ) with γ0 = γ(N)
∣∣
N=0

, γ1 =
dγ(N)

dN

∣∣∣
N=0

, (18)

where

γ0 = γ(N)
∣∣
N=0

=
1

ln Ω
(m)
0

ln

(
f0

1 + s

)
[f0 = f |N=0 ] , (19)

γ1 =
dγ(N)

dN

∣∣∣
N=0

=
1

ln Ω
(m)
0

[
γ0(s− 3 + 3Ω(m)

0
) + (1 + s)(Ω(m)

0
)γ0

+ 2(1− s)− 3

2

(
Ω(m)

0
+ (Ω(m)

0
)1−γ0

)]
, (20)

by Eqs. (15) and (16).
For the ΛCDM case (s = 0), assuming Ω(m)

0
= 0.3, one gets γ0 ' 0.555 and γ1 ' −0.016. Moreover, the

signature of γ1 can discriminate between various DE models and modified gravity theories. For instance, the
minimal level Dvali-Gabadadze-Porrati (DGP) model predicts (0.035<γ1<0.042) which is in sharp contrast
with the GR predictions [62].

3.2 Numerical fitting of growth index

Let us now focus on determining the parametric set p(θ) = {s,Ω(m)
0

, σ(8)
0
, γ0 , γ1}. While the form of the

parameter γ1 is already obtained in terms of s, Ω(m)
0

and γ0 , we require to assert the form of γ0 in the first

place. However, as we see from Eq. (19), γ0 depends on s and Ω(m)
0

as well. Hence we resort to solving

numerically the differential equation (15), by taking s ∈ [0, 0.1] and Ω(m)
0
∈ [0.2, 0.4] (which are of course

fairly wide range of values), and for a step-size of 0.01. Using Eq. (19) thereafter, we obtain the following fit:

γ0 '
0.547

[Ω
(m)
0 ]0.012

− 1.118 sΩ(m)
0

. (21)

In order to verify the validity of this fitting, let us take the Ω(m)
0

= 0.3, say, and the limit s → 0. Eq. (21)
then gives γ0 ' 0.555 which is precisely what we had estimated theoretically, for the ΛCDM case, in the last
subsection, by using Eqs. (15) and (19). The goodness of the fit is illustrated in Figs. (2a) and (2b), in which
we have plotted the fractional error in the fitting, viz. Ef (z)( = [fF (z) − f(z)]/f(z) with z ∈ [0, 2.5], for a
fixed Ω(m)

0
= 0.3 and a range of fiducial values of s, and for a fixed s = 0.01 and a range of fiducial values of

Ω(m)
0

, respectively. In both the cases, the error turns out to be ' 0.2% at z ' 1, indicating a fair amount of
the accuracy of the fit.
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(a) Growth factor fitting error for fixed Ω(m)
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Figure 2: Functional variations of the growth factor fitting error, Ef (z), in the redshift range z ∈ [0, 2.5], for certain fiducial
parametric settings.

4 Parametric estimations from RSD and Hubble observations

After formulating γ0 and γ1 in terms of s and Ω(m)
0

, we are left with only three parameters s, Ω(m)
0

and

σ(8)
0

in hand. So in order to estimate them from the observations use the fσ(8)(z) observations from various
galaxy data surveys [159–169], we will now proceed to perform the statistical analysis, in particular MCMC
simulation to estimate our model parameters. Theoretically, (fσ(8))th(z) can be written as [170–175]

(fσ(8))th(z) = f(z)σ(8)
0

δ(m)(z)

δ
(m)
0

, where σ(8)
0

= σ(8)|z=z0 . (22)

which can be explicitly written as

(fσ(8))th(N) = σ(8)
0

(1 + s)(Ω(m))γ(N) exp

[
(1 + s)

∫ N

0
(Ω(m))γ(N)dN

]
, (23)

where we have used Eq. (16). Since our parameter s is presumably positive definite and small, it is convenient
for us to write s = |s̃|, where s̃ can take both positive and negative values.

In order to perform the standard χ2 minimization, we use the growth data observations: Aobs ≡ (fσ(8))obs
along with the theoretical predicted values: Ath ≡ (fσ(8))th in the standard definition of the χ2 function

χ2 := V mC−1
mnV

n, (24)

where V := Aobs−Ath and C−1
mn is the inverse of the covariance matrix between three WiggleZ data points [175].

As we have already shown in fig. (2) that the parametric form (18) tends to diverge in case of interacting
DE from its numerical solution (16) at high redshifts, we therefore restrict ourselves for the observations
upto z = 1 for the datasts: GOLD-2017 [172] , and H(z) data set [176]. Also, we set the range of priors
as follows: (i) −1 ≤ s̃ ≤ 1, (ii) 0.1 ≤ Ω(m)

0
≤ 0.6, (iii) 0.5 ≤ σ(8)

0
≤ 1.2 and (iv) 0.4 ≤ h ≤ 0.9, where

h := H0/[100Kms−1Mpc−1]. The obtained contour plots between parameters upto 3σ level are shown in
Figs. 3a and 3b.
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Figure 3: The 1σ-3σ contour levels for Gold dataset (left), and its combination with the Hubble dataset (right). The solid blue
line denotes the best-fit and dashed lines correspond to the 1σ level.
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Parametric estimations
Observational (best fit & 68% limits) χ2/dof

datasets Ω(m)
0

σ(8)
0

h s̃

1. GOLD

0.2610+0.0487
−0.0451 0.7460+0.0476

−0.0466

-
0.0319+0.0683

−0.0702

0.8390

2. GOLD+H(z)

0.2753+0.0393
−0.0387 0.7417+0.0393

−0.0402 0.6804+0.0189
−0.0183 0.0308+0.0573

−0.0573

0.6125

Table 1: Best fit values with 1σ confidence limits of parameters Ω(m)
0

, σ(8)
0

, h and s̃ together with their corresponding χ2/dof
for GOLD and GOLD +H(z) dataset.

The estimations are shown in table (1) in which one can see that the best-fit of s̃ for both sets of data
(GOLD and GOLD+H(z)) is insignificant (as expected, since observations mostly prefer the ΛCDM model),
but even then within 1σ limits its domain can reach upto significantly large value i.e. O(10−2) which shows
a reasonable large deviation from the ΛCDM model. This indicates from the low-redshift data we can still
observe a convincing amount of DEM interaction even at the 1σ level.

5 Conclusion

We have formulated the growth of linear matter density perturbations in a parametric form for a DE model
which stems out from a modified gravity approach consists of metric and torsion as two basic entities of the
space-time geometry. In the formalism, we have briefly demonstrated that a non-minimal coupling of metric
and torsion with scalar field can give rise to a scalar-tensor action of DE in the Jordan frame which upon
conformal transformation to the Einstein frame naturally makes scalar field non-minimally coupled with the
matter sector. Due to this coupling, matter and scalar field exchange their energies between each other which
ceases their individual energy densities to be self-conserved. The latter, thus, has direct influence on the
underline matter density contrast and its evolution, which we have explored in this work.

We have demonstrated that in the perturbed FRW space-time, the scalar field and matter coupling
enhances the growth of matter density perturbations in the sub-horizon regime, allowing it to cross the upper
barrier of unity at large redshifts. Since this effect is unique in the interacting DEM scenarios it requires
a slight modifications in the standard parametric ansatz of growth factor. With suitable modification we
propose a slightly different growth factor ansatz to make the parametric formulation compatible with the
theoretical predictions. Also, in view of the time evolving growth index, which is even encountered for the
ΛCDM model, we have chosen an appropriate functional form i.e. first order Taylor expansion about present-
day value of the scale factor a(t). This simple but well defining form of the growth index indeed illustrates the
parametric formulation of growth factor close to its actual evolution atleast upto z ' 1. Since the present-day
value of growth index itself depends on the background model parameters, therefore in order to choose its
explicit function form we have numerically obtained its fitting formula in terms of coupling as well as energy
density parameter which we have shown to be a well approximation for a wide range of parameters.

As to the parametric estimations, we have constrained parameters s̃, Ω(m)
0

and σ(8)
0

by using the RSD as
well as its combination with the Hubble data. We have found that for the GOLD datset the s̃ and hence s
parameter can show mildly large deviation from the ΛCDM model upto 1σ, which is comparatively smaller
for the combined dataset, as expected. The consistency in our estimations with the theoretical predictions
confirms the validity of our fitting function. However, to explain growth history for redshifts > 1, the above
parametrization still requires further modifications to deal with various DE models as well as modified gravity
theories, which we will shall endeavor to report in near future.
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