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Abstract: Searching for possible indicators of spatial topology of the Universe in the Cosmic Micro-

wave Background data, one recognizes a quite promising interpretation which suggests that the 

shape of the space manifests itself in the form of anomalies in the large angular scale observations, 

such as the quadrupole and octopole alignment. Motivated by the presumptive existence of such a 

tempting connection, we study the chimney topology, � × � × �, which belongs to the class of to-

roidal topologies with a preferred direction. The infinite axis in this case may be attributed to the 

preferred axis of the aforementioned quadrupole and octopole alignment. We investigate the grav-

itational aspects of such a configuration. Namely, we reveal the form of the gravitational potential, 

sourced by point-like massive bodies. Starting from the perturbed Einstein equations, which ensure 

the proper demonstration of relativistic effects, one can derive the Helmholtz equation for the scalar 

perturbation (gravitational potential). Through distinct alternative methods, we present the physi-

cally meaningful nontrivial exact solutions of this equation. Our approach excludes any presump-

tions regarding the spatial distribution of gravitating sources. We show that the particular solution 

that appears in the form of summed Yukawa potentials is indeed very convenient for the use in 

numerical calculations, in the sense that it provides the desired accuracy with fewer terms in the 

series. 
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1. Introduction 

 The yet undetermined topology of space, how it may have affected the early evolu-

tion of the Universe in the quantum gravity regime and the large scale structure formation 

at later stages are all vibrant topics of research both in theoretical physics and cosmology. 

The theory of General Relativity admits any type of spatial topology, so it is quite possible 

that the Universe is not simply connected, but instead, multiply connected and in the lat-

ter case, may have a finite volume with negative or zero curvature [1]. Common examples 

of multiply connected spaces include spaces with the slab � × � × �, chimney � × � × � 

and the three torus � × � × � topologies, which belong to the class of toroidal topologies 

in one, two and three dimensions, respectively. 

Given the absence of answers on theoretical grounds, there is extensive ongoing re-

search on finding, if any, observational indications of the shape of space [2–6], especially 

in the Cosmic Microwave Background (CMB) data. Certain compelling studies have 

pointed out that CMB anomalies in large angular scale observations, namely, the suppres-

sion of the quadrupole moment and the quadrupole and octopole alignment, may in fact 

be consequences of the spatial topology [7,8]. In this connection, we study the chimney 
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topology with a single infinite axis which may be referred to as the preferred axis of the 

quadrupole and octopole alignment and the so-called “axis of evil” [9] (see [10] for other 

potential observable imprints of a preferred axis). From Planck 2013 data [1], the radius of 

the largest sphere that may be inscribed in the topological domain is bounded from below 

by �� > �. ���rec for a flat Universe with �� × � (equal-sided chimney) topology, where 

�rec (∼ �� Gpc) represents the distance to the recombination surface. There are also former 

bounds imposed on the size of the Universe by the 7 and 9-year WMAP temperature map 

data available in [9,11] for the topologies with toroidal dimensions. 

In the present work, we consider the space with chimney topology � × � × � and 

study its impacts on the shape of the gravitational potential. In the cosmological context, 

the potential is sourced by matter density fluctuations [12] and in the Newtonian limit, it 

is determined in the conventional way by the Poisson equation. Regarding toroidal topol-

ogies, the shape of the gravitational potential was previously investigated in [13] and it 

was shown that a physically meaningful nontrivial solution to the Poisson equation for 

the � × � × � type does not exist. Nevertheless, with the aim to include the relativistic 

effects in the scheme, one may instead resort to the perturbed Einstein equations, which 

subsequently yield a Helmholtz-type equation for the gravitational potential [14–16]. Very 

conveniently, and as we herein demonstrate for the chimney topology, this equation can 

be solved exactly to give nontrivial and physically meaningful expressions without as-

suming any particular spatial distribution for the gravitating bodies. Within this latter 

approach, we elaborate on two alternative solutions for the gravitational potential and 

demonstrate explicitly that the one in the form of summed Yukawa potentials is the more 

convenient expression for numerical computation purposes. 

2. Methods 

Starting with the perturbed Einstein equations to introduce the general relativistic 

effects into the scheme, one finds that for the concordance ΛCDM cosmological model, 

the gravitational potential Φ satisfies [14–16] 

 

ΔΦ� −
3����

2�
Φ� =

���

2�
(� − �)̅ , � = � ��

�

�(� − ��) , (1)

 

where κ ≡ 8πG� /c� (��  is the Newtonian gravitational constant and � is the speed of 

light), � denotes the scale factor and Δ is the Laplace operator in comoving coordinates. 

The comoving mass density and its averaged value are represented by ρ and ρ� = const, 

respectively. Delta-shaped gravitating bodies with masses m �  constitute the pressureless 

matter component of the Universe and imitate, for instance, the galaxies and groups of 

galaxies. The 0 subscript in Equation (1) indicates that peculiar motion has been omitted 

in the current setting (see also [17]). 

The shifted gravitational potential Φ� � ≡ Φ� − 1/3 is then straightforwardly deter-

mined by 

 

ΔΦ� � −
a�

λ�
Φ� � =

κc�

2a
ρ , λ ≡ �

3κρc�

2a�
�

��/�

, (2)

 

which may be solved using the superposition principle. 

In the space with chimney topology T� × T� × R, we first assign periods l� and l� to 

the tori T� and T� along the x- and y-axes, respectively. In such configuration, there ex-

ist infinitely many images for each gravitating source, located at points shifted from its 

actual position by multiples of l� and l� along the corresponding axes. Then, for a parti-

cle � placed at the center of Cartesian coordinates, the delta functions δ(x) and δ(y) 

read 
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and intrinsically contain the information of the periodic images of the source as well. 

Given the full form of these functions, the solution to Equation (2) follows as 
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Now, since Equation (2) is of Helmholtz-type, its solution may also be alternatively 

obtained by considering the series of Yukawa potentials, each of which corresponds to the 

individual contribution of the periodic image: 

 

Φ� � = −
κc��

8πa
� �

1

�(� − ����)� + (� − ����)� + ��

��

�����

��

�����

  

      × exp�−
��(� − ����)� + (� − ����)� + ��

�
� . (5)

 

As we have indicated earlier, Equations (1) and, therefore, (2) do not incorporate the 

effects of peculiar motion. In [18], however, it has been shown that the role of such contri-

bution is essential in the cosmological setting and that peculiar velocities may be effec-

tively reintroduced by using the effective cosmological screening length λeff (see formula 

(41) of [18]) in replacement of the screening length λ in Equations (1) and (2). At this 

point, this amounts to substituting � with �eff in the right-hand side of (4) and (5), which 

yields 
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and 
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� , (7)

 

where we have also employed the rescaled quantities x = x�l,y = y�l,z = z�l,λeff = ��eff�l  

and for simpler representation, set l� = l� = l. The labels cos and exp have been intro-

duced in the above set to distinguish between two forms of the solution. Since peculiar 

velocities are effectively restored, the 0 subscripts have been eliminated. 
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Both formulas (6) and (7) specify the gravitational potential attributed to a point-like 

body with mass �, located at the point (x,y,z) = (0,0,0) in Cartesian coordinates, to-

gether with its images at points (x,y,z) = (k�l,k�l,0) for k�,� = 0,±1,±2,… Evidently, 

since these rescaled potentials consist of infinite series, it is necessary to know the mini-

mum number of terms required to calculate them numerically for any order of accuracy. 

As to the accuracy adopted in our work, we demand that this number � is determined in 

such a way to keep the absolute value of the ratio (exact Φ� - approximate Φ�) / (exact Φ�) 

less than 0.001. It may, of course, differ for the alternative formulas, so we label these 

numbers as �exp  and �cos, correspondingly. The formula which admits the smaller � 

serves as a better tool for numerical analysis. 

In the following section, we present our results regarding the comparison of the for-

mulas (6) and (7) based on the above mentioned criterion. Since these expressions contain 

double series, we use Mathematica [19] for generating the sequence of pairs (k�,k�) in 

the increasing order of �k�
� + k�

�. Then, � is ascribed the number of combinations provid-

ing the desired precision. 

3. Results 

 For demonstration purposes, we have chosen eight points on the rescaled coordi-

nates and used Mathematica [19] to calculate the exact value of the gravitational potential 

at these points by the formula (7) for � ≫ �exp. The results are shown in Table 1 for two 

cases ��eff = 0.01 and ��eff = 0.1. Provided that � ≥ �exp, the approximate value of ��exp 

(from (7)) agrees with the exact one up to one tenth of a percent. The minimum numbers 

of terms needed in the alternative formula (6) to obtain these potential values, again, up 

to one tenth of a percent, correspond to the �cos columns. 

Table 1. The rescaled gravitational potential Φ�  and numbers �exp and �cos of terms in series at eight selected points for 

��eff = 0.01 and ��eff = 0.1 in the left and right charts, respectively. The dash hides incorrect outputs produced due to com-

putational complications. 

 

 The data in Table 1 clearly illustrate that the formula (7) is a better option than its 

alternative for reducing the computational cost in numerical analysis as �exp ≪ �cos. It is 

worth noting that the selected values of ��eff serve well in depicting the observable Uni-

verse as they both satisfy ��eff < 1: for the chimney topology studied here, the lower bound 

on physical periods �� of the tori is of the order of 20 Gpc [1]. Additionally, according to 

[18], the current value of the effective screening length is approximately 2.6 Gpc, so the 

ratio �eff/(��) , in terms of these values, limits the physically interesting range for ��eff to-

day. 

 Finally, we present Figure 1 to help visualize the shape of the rescaled gravitational 

potential �� for two different values of ��eff considered in Table 1. To plot these figures, 

we have used Mathematica [19] and employed the formula (7) for � ≫ �exp. 
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(a) 

 

(b) 

Figure 1. Rescaled gravitational potential Φ�  for � = 0 (a) for ��eff = 0.01; (b) for ��eff = 0.1. 

4. Conclusions 

 In the present work we have elaborated on two alternative methods to reveal the 

form of the gravitational potential for the chimney topology � × � × � of the Universe. 

One of the solutions (see Equation (6)) has been obtained by Fourier expanding the delta 

functions using periodicity along two toroidal dimensions in the model. The other one 

(see Equation (7)) has been presented as the plain summation of the solutions to the Helm-

holtz equation, for the source particle and its images, all of which admit Yukawa-type 

potential expressions. Meanwhile, we have emphasized the essential role of the effective 

screening length ��eff, which specifies the cutoff distance of the gravitational interaction in 

the cosmological setting, manifested explicitly in this latter expression. 

 Having obtained two alternative formulas for the gravitational potential, we then 

demonstrated that the solution containing the series sum of Yukawa potentials is a better 

choice for use in numerical calculations, in the sense that the desired accuracy is attained 

by keeping fewer terms in the series in the physically significant cases when λ�eff < 1. 
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