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Abstract: Mixing transformations in QFT are non-trivial, since they are connected with the issue of1

the unitary inequivalence between Fock space for definite flavor fields and Fock space for definite mass2

fields. This poses the problem of selecting the right (i.e. physical) representation for asymptotic mixed3

fields. Here, we approach to the study of this inequivalence in the context of mixing of neutrinos. As a4

test-bench for our investigation, we consider the weak decay of a uniformly accelerated proton within5

the framework of the minimally extended SM. By relying on some core principles and predictions6

of the Theory, such as the General Covariance, the conservation of the family lepton numbers in7

the tree-level interaction vertices and the CP-symmetry violating effects in neutrino oscillations, we8

conclude that the only way to keep the formalism internally consistent is by resorting to the flavor9

representation.10
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1. Introduction12

In the context of canonical QFT, Haag’s theorem [1] in its modern form [2] states that, given13

two different representations of the CCR, (H1, {Oi
1}) and (H2, {Oi

2}) (where H1/2 are the respective14

Hilbert spaces and {Oi
1/2} the sets of related operators in CCR), there exists in general no unitary15

map U from H1 to H2 such that, for each O j
1 ∈ {Oi

1}, one can write O j
2 = UO j

1U−1 ∈ {Oi
2}. The two16

representations are then said to be unitarily inequivalent1. Beyond pure mathematical aspects, this17

theorem features a number of physical phenomena [4], such as the spontaneous symmetry breaking18

(where the same algebra describes both the normal and symmetry-broken phases) and Hawking19

black-hole evaporation (for which inequivalent representations of the CCR are associated to different20

observer’s perspectives, the static observer outside the black hole on one hand, the radially free-falling21

observer on the other).22

Recently, the pivotal rôle of inequivalent representations has been highlighted in problems related23

to the quantization of superpositions of fields with different masses (henceforth, we simply call24

these superpositions “mixing transformations” and the ensuing fields “mixed” or “flavor fields”) [5].25

Specifically, it has been shown that mixing transformations at level of ladder operators exhibit the26

structure of a rotation nested into a Bogoliubov transformation. As a result, the vacuum for fields with27

definite flavors becomes a condensate of particle-antiparticle pairs with definite masses, thus giving28

rise to inequivalent flavor and mass Fock spaces. The question naturally arises as to which of these29

two representations should actually be regarded as the physical one for asymptotic mixed fields.30

1 Notice that this problem does not arise at all in non-relativistic QM, where Stone-von Neumann uniqueness theorem [3]
guarantees that the representations of the CCR are all unitarily equivalent to each other.
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Along this line, a clue to the solution has been provided through the study of weak decay processes
involving neutrinos. In particular, consider the inverse β-decay of a uniformly accelerated proton, which
in the frame of the laboratory reads [6]

p a−→ n + e+ + νe , (1)

where p, n, e+ and νe denote the proton, neutron, positron and neutrino, respectively, while a stands for
the magnitude of the proper acceleration. Aside from our specific goal, we mention that this process
also served as a theoretical proof of the necessity of Unruh effect [7] for the General Covariance of QFT
[9]. Indeed, by switching to the rest-frame of the proton and demanding the scalar decay rate (i.e. the
decay rate over the proper time) to be invariant, the conclusion that the proton must now interact with
virtual leptons popping out from Unruh thermal bath as

p + e− → n + νe , p + νe → n + e+ , p + e− + νe → n , (2)

is inevitably reached.31

The decay (1) was originally addressed in [8,9] in a toy model with massless neutrino. Attempts32

to embed neutrino mass and mixing were later carried out in [6,10,11] by considering a scenario with33

only two neutrino flavors. However, conflicting results on the very nature of asymptotic neutrinos34

were achieved. Following [12], here we analyze the inverse β-decay in the three-flavor description35

with neutrino oscillations and CP violation effects. We compute the scalar decay rate in both the36

laboratory and comoving frames, and compare the final results. By relying on some core principles37

of the Theory, such as the fulfillment of the General Covariance and the conservation of the family38

lepton numbers in the tree-level interaction vertices, we show that the only way to keep the formalism39

internally consistent is by resorting to the flavor representation.40

Throughout the work, we use natural units kB = h̄ = c = 1 and Minkowski metric with the41

conventional time-like signature.42

2. Methods43

This section is devoted to set the stage for the computation of the proton decay rate. Following44

[6,9,12], we describe the neutron n and proton p as excited and unexcited states of a two-level quantum45

system, the nucleon. In order to account for the uniformly accelerated motion of the proton, we assume46

that it moves along a Rindler trajectory2.47

For accelerations a small enough with respect to the masses of the intermediate bosons W± and
Z0, the interaction action can be described by a semiclassical Fermi-like effective theory, i.e.

ŜI =
∫

d4x
√
−g Ĵh,λ Ĵλ

l , (3)

where g is the determinant of the metric. Here we have defined the (classic) hadron current as48

Ĵh,λ = q̂(τ)uλδ(x)δ(y)δ(u − 1/a), where q̂(τ) = eiĤτ q̂(0)e−iĤτ is the monopole operator, Ĥ is the49

nucleon hamiltonian and GF = |〈n|q̂(0)|p〉| is Fermi coupling constant. The four-vector uλ represents50

the nucleon velocity along the Rindler trajectory, which is parameterized by the condition u = 1/a,51

with u being Rindler spatial coordinate. The nucleon proper time τ is related to the coordinate time v by52

τ = v/a. On the other hand, the quantum lepton current reads Ĵλ
l = ∑`=e,µ,τ

(
Ψ̂ν`γ

λΨ̂` + Ψ̂`γ
λΨ̂ν`

)
,53

where Ψ̂`(ν`)
is the electron (neutrino) Dirac field of flavor `.54

2 As far as the momenta ke, kν of the positron and neutrino are much smaller than the proton and neutron mass, mp, mn, one
can assume that the emitted neutron keeps on moving along the same Rindler trajectory of the ingoing proton. In what
follows, we make use of this approximation without affecting the overall validity of our considerations.
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A remark is now in order. According to Pontecorvo’s pioneering works on two-flavor mixing55

[13,14] and their extension to three generations [15], it is a well-established fact that neutrinos weakly56

interact with charged leptons in flavor eigenstates |ν`〉, which are superpositions of mass states |νj〉57

(j = 1, 2, 3) via PMNS matrix U ≡ U(θ12, θ23, θ13, δ), where θ12, θ23 and θ13 are the three mixing angles58

and δ the CP violating phase (see [12] for the explicit expression of U). Notice that this is mandatory to59

obey the conservation of the family lepton numbers in the (tree-level) interaction vertices. In the next60

Section, we shall see how to take advantage of this feature in exploring the flavor-mass controversy.61

3. Results and Discussion62

Let us now give computational details. Firstly, we analyze the inverse β-decay in the laboratory63

frame, where the accelerating source provides the proton with the missing energy to convert into a64

neutron, a positron and an electron neutrino according to (1). We then study the process from the65

point of view of an observer comoving with the proton (see (2)). As commented above, in this case the66

proton at rest is allowed to decay due to the interaction with electrons and antineutrinos in Unruh67

thermal bath.68

3.1. Laboratory frame69

By making use of the S-matrix formalism, the (tree-level) scalar decay rate for the process (1) takes70

the form [12]71

Γ ≡ 1
T ∑

σe ,σν

∫
d3kν

∫
d3ke

∣∣A∣∣2 (4)

|Ue1|4 Γ1 + |Ue2|4 Γ2 + |Ue3|4 Γ3 +
(
|Ue1|2 |Ue2|2 Γ12 + |Ue1|2 |Ue3|2 Γ13 + |Ue2|2 |Ue3|2 Γ23 + c.c.

)
,

where σe(ν) is the electron (neutrino) polarization, T is the nucleon proper time and we have denoted72

byA the transition amplitudeA = 〈n| ⊗ 〈e+, νe|ŜI |0〉 ⊗ |p〉. U`,i (` = {e, µ, τ}, i = {1, 2, 3}) represents73

the generic element of PMNS matrix, while the explicit expressions of Γi and Γij are given in Eqs. (19)74

and (20) of [12].75

At this stage we notice that, due to the asymptotic occurrence of flavor oscillations, the total decay
rate also gets non-trivial contributions from the processes p a−→ n + e+ + νµ(τ). By adding up the three
rates, in the laboratory frame we finally obtain [12]

Γlab = |Ue1|2 Γ1 + |Ue2|2 Γ2 + |Ue3|2 Γ3 . (5)

3.2. Comoving frame76

In the comoving frame, the evaluation of the decay rate is contingent upon the quantization77

of lepton fields in Rindler-Fulling scheme, which is the procedure of quantization pertaining to78

a uniformly accelerated observer in Minkowski spacetime. Bearing in mind that the proton can79

absorb (emit) a particle of Rindler frequency ω from (toward) the thermal bath with probability80

nF(ω) = (eω/TU + 1)
−1
(

ñF(ω) = 1− nF(ω)
)

, where TU = a/2π is Unruh temperature [7], the decay81

rate for the three process (2) is82

Γ = |Ue1|4 Γ̃1 + |Ue2|4 Γ̃2 + |Ue3|4 Γ̃3 (6)

+
(
|Ue1|2 |Ue2|2 Γ̃12 + |Ue1|2 |Ue3|2 Γ̃13 + |Ue2|2 |Ue3|2 Γ̃23 + c.c.

)
,

where Γ̃i and Γ̃ij are defined as in Eqs. (39) and (40) of [12].83
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Once again, the necessity to account for flavor oscillations requires us to consider also the
following extra channels: p + e− → n + νµ(τ) , p + νµ(τ) → n + e+ and p + e− + νµ(τ) → n.
Therefore, the total decay rate in the comoving frame becomes [12]

Γcom = |Ue1|2 Γ̃1 + |Ue2|2 Γ̃2 + |Ue3|2 Γ̃3 . (7)

Clearly, since we are dealing with a scalar quantity, we expect that Γlab = Γcom. This has been explicitly84

proved in [6,12] (at least in the realistic approximation of small neutrino mass differences), showing85

that Γi = Γ̃i , Γij = Γ̃ij, for all i, j. We thus find that the use of flavor states is consistent with the86

general covariance of the Theory. Actually, we point out that the same conclusion would be reached by87

working in the mass representation [11], forcing us to look for some other criterion to discern between88

flavor and mass states.89

In this vein, let us consider as a test-bench the description of CP symmetry violating effects in90

neutrino oscillations, which are predicted by the SM and have also been measured using long-baseline91

neutrino and antineutrino oscillations observed by the T2K experiment (see [16] and references therein).92

Such effects can be quantified by introducing the so-called Jarlskog invariant J, which is defined by93

Im
[
UδiU∗γi

U∗δjUγj

]
≡ J ∑λ,k εδγλ εijk, where δ, γ, λ = {e, µ, τ} and i, j, k = {1, 2, 3}. Obviously, since94

this is the unique phase-independent measure of CP violation which we can built from PMNS matrix,95

all CP violating observables are expected to depend on it.96

In order to feature the flavor-mass dichotomy via the study of CP violation, we consider the
scattering matrix Ŝweak for a generic charged-current weak interaction with an outgoing neutrino (the
specific case of the inverse β-decay is recovered by simply equating Ŝweak to ŜI given in Eq. (3)). To
quantify CP violation, we assume that the neutrino, emitted for instance with flavor e, undergoes
oscillation and is detected after a certain distance with flavor µ. By working in the asymptotic flavor
basis, the transition amplitude for this process is

Aνe ,νµ = out〈νµ, . . . |Sweak
(
ψ̄νe . . .

)
| . . . 〉in , (8)

where the dotted spaces must be filled with the other fields/states involved in the interaction. After97

implementing the mixing transformation on both the neutrino field and state, we are led to the98

following expression for the decay rate99

Γνe ,νµ ∼ |Aνe ,νµ |
2 = |Uµ1|2|Ue1|2|A1|2 + |Uµ2|2|Ue2|2|A2|2 + |Uµ3|2|Ue3|2|A3|2 (9)

+
(

U∗µ1 Ue1 Uµ2 U∗e2A1A∗2 + U∗µ1 Ue1 Uµ3 U∗e3A1A∗3 + U∗µ2 Ue2 Uµ3 U∗e3A2A∗3 + c.c.
)

,

where we have omitted the sum over polarizations and the integration over momenta to streamline100

the notation.101

Let us now focus on the mirror-symmetric interaction (Parity transformation) and swap particles
with antiparticles (Charge conjugation). By evaluating the decay rate Γν̄e ,ν̄µ for this process, we can
finally quantify CP asymmetry as

A(e,µ)
CP ≡ Γνe ,νµ − Γν̄e ,ν̄µ = 4 J

{
− Im [A1A∗2 ] + Im [A1A∗3 ] − Im [A2A∗3 ]

}
. (10)

As expected, this quantity is non-vanishing and proportional to the Jarlskog invariant J. On the other102

hand, it is quite unclear how to reproduce such a result if working with asymptotic mass states. In fact,103

as shown in [12], in that case one would trivially get ACP = 0, hinting that the mass representation is104

inconsistent with the prediction of CP violation in neutrino oscillations.105
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4. Conclusions106

Understanding the very nature of asymptotic neutrinos is a challenging, but fundamental task,107

given their abundance in the Universe and their unparalleled rôle in investigating physics at all energy108

scales [17]. Waiting for experimental hints, in this work we have approached to this study from a109

purely theoretical perspective. By analyzing the weak decay of a uniformly accelerated proton within110

the framework of the SM, we have shown that a generally covariant formalism consistent with i)111

the conservation of the family lepton numbers in the interaction vertices, ii) the phenomenologically112

observed neutrino oscillations and iii) the related CP symmetry violation can be formulated, provided113

that asymptotic neutrinos are described through flavor states.114

Clearly, further questions need to be answered. First, we have developed computations up to the115

leading order in neutrino mass differences. To strengthen our claim, the exact calculation should be116

performed. Nevertheless, we expect that higher order terms do not spoil the overall validity of our117

result, although some novel effects might appear. For instance, in [18] it has been argued that Unruh118

distribution for mixed fields acquires extra terms which break down its thermal nature. It would then119

be interesting to explore the interplay of this exotic behavior of Unruh effect with our findings. Special120

focus is also deserved by the study of inertial effects on the oscillation probability formula, given their121

intimate connection with gravity-induced corrections. More work is inevitably required along these122

and other directions.123
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Abbreviations126

The following abbreviations are used in this manuscript:127

128

QFT Quantum Field Theory
SM Standard Model
CP Charge Conjugation & Parity
CCR Canonical Commutation Relations
QM Quantum Mechanics
PMNS Pontecorvo-Maki-Nakagawa-Sakata
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