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Abstract: In this paper, we introduce a framework to study the tidal deformation of relativistic1

anisotropic compact stars. Anisotropic stresses are ubiquitous in nature and widely used in2

modelling compact stellar object. Tidal deformability of astrophysical compact objects is a natural3

effect of gravity such as one produced by a companion in a binary system. In general relativity, the4

existence of this measurable effect of gravity can be quantified by their tidal Love numbers (TLN)5

which characterize the deformability of a neutron star (NS) from sphericity. The tidal deformability6

or polarizability parameter of a NS depends on its complex internal structure and hence the nature7

of the compact object can study through measuring the TLN. We choose a particular solution which8

is the anisotropic generalization of Tolman IV model as the interior of the compact stellar object.9

The physical acceptability of the model has been shown graphically by considering the pulsar10

4U 1608-52 with their current estimated mass and radius. By computing quadrupole moment we11

found out the TLN as a dependent on anisotropy of the compact object. We graphically analyze12

the variation of the TLN against anisotropy for different compact objects with compactness factor.13

The numerical value of TLN is given for different compact objects for physically acceptable value14

of anisotropic parameter.15

Keywords: Compact star; Anisotropy; Tidal effect; Love number16

1. Introduction17

Compact objects are the extremely dense astro-physical objects provides strong18

gravity and high density for studying the fundamental physics related to nuclear matter19

properties. In general, compact objects exist with its binary companion is a natural20

setup. In this binary setup a compact star is assumed to be immersed in the tidal field21

of its companion hence produce tidal deformation. The possibility of generation of22

the gravitational waves during extremely fast rotational motion of binary system was23

predicted. Recently gravitational wave has been detected by advanced astronomical24

observations of LIGO and Virgo collaborations from the binary neutron star merger25

event GW170817 [1]. A neutron star placed in a perturbing external gravitational26

field is deformed and induces quadrupole moment which affect the binding energy27

of the system and increase the rate of emission of gravitational waves during the late28

stage inspirals. The recent observational data based on the measurement of the tidal29

deformability impose a stringent constraint on the allowed equation of state (EOS). In30
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particular, the theoretically prediction of the mass and radius of neutron star (NS) mostly31

depends on the nature of the nuclear EOS at supra-nuclear densities. In this context tidal32

deformability can be used to study their interiors. The EOS of neutron stars, involves33

in their microscopic properties and uniquely determines the macroscopic properties,34

such as the maximum allowed NS mass, radius and tidal effects. The tidal response35

is the astrophysical constraints that can be employed as probes of NS properties. It is36

the astrophysically observable macroscopic property of NS which can be defined as the37

ratio of the induced multipole moment of a star over the inducing tidal field from its38

companion. The tidal Love number (TLN), which is the ratio of the induced quadrupole39

moment to the perturbing tidal gravitational field, can be expressed by a relatively40

simple analytical formula.41

On the other hand the existence of pressure anisotropy, the difference of radial and42

transverse pressures, is ubiquitous in a compact star. The source of pressure anisotropy43

in a compact star can be due to various reasons, e.g., pion and kaon condensates [2,3],44

high density, existence of a solid core or type 3A superfluid [4,5], strong magnetic45

fields [6], a mixture of perfect and a null fluid, viscosity, phase transition [7] etc. There46

are several works available in the literature where incorporating anisotropy into the47

matter distribution of compact objects in the background of General Relativity (GR),48

have been addressed to various issues of the compact structures [8–14].49

In this paper, we assume a known solution which is an anisotropic generalization50

of Tolman IV model to describe the compact star. We have calculated the TLN which51

actually measures the tidal deformability of the compact object induced by external field.52

2. Physical features and tidal Love number53

The tidal distortion of NSs in a binary system connects the EOS, describing the
nature of the matter composition star with that of the gravitational wave emission
during the inspiral [15]. We consider a static spherically symmetric star, immersed in an
external quadrapolar tidal field Eij [16,17] arising due to its binary companion. The star
in response to tidal field develops a quadrapole moments Qij which can be related to
the linear order external tidal field Eij as [17]

Qij = −Λ Eij, (1)

where Λ is the tidal deformability of the NS and is related to the l = 2 dimensionless
TLN k2 as [17]

k2 =
3
2

Λ R−5. (2)

The background geometry of spacetime of a spherical static star can be written as

(0)ds2 =(0) gµνdxµdxν

= −e2ν(r)dt2 + e2λ(r)dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (3)

For the spherically static metric (3), the stress-energy tensor is given as

(0)Tξ
χ = (ρ + pt)uξuχ + ptg

ξ
χ + (pr − pt)η

ξηχ, (4)

where uξ uξ = −1, ηξ ηξ = 1 and ηξuξ = 0.54

We choose a particular model which is an anisotropic generalization of Tolman IV55

Model [18] given as56

e2ν = A2(1 + aCr2), (5)

e2λ =
1

(aCr2+1)(1−BCr2)
2aCr2+1 − αCr2

2aCr2+1

. (6)
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Interesting to note that for α = 0, this solution reduces to the well known Tolman57

IV solution [19].58

For the line element (3), the independent set of the Einstein field equations are then59

obtained as60

8πρ =
1
r2

[
r(1− e−2λ)

]′
, (7)

8πpr = − 1
r2

(
1− e−2λ

)
+

2ν′

r
e−2λ, (8)

8πpt = e−2λ

(
ν′′ + ν′2 +

ν′

r
− ν′λ′ − λ′

r

)
, (9)

where primes (′) denote differentiation with respect to r. In the field Equations (7)-(9),61

we have assumed G = 1 = c. The system of equations determines the behavior of the62

gravitational field of an anisotropic imperfect fluid sphere.63

For the assumed solutions we have64

8πρ =
C
(
a
(
Cr2(a(6BCr2 + 2

)
+ 2α + 7B

)
+ 3
)
+ 3(α + B)

)
(2aCr2 + 1)2 , (10)

8πpr = −
C
(
aCr2 + 1

)(
a
(
3BCr2 − 1

)
+ B

)
+ αC

(
3aCr2 + 1

)
(aCr2 + 1)(2aCr2 + 1)

, (11)

8πpt = −
C
(
aCr2 + 1

)2(a(3BCr2 − 1
)
+ B

)
+ αC

(
aCr2(aCr2 + 3

)
+ 1
)

(aCr2 + 1)2
(2aCr2 + 1)

, (12)

8π∆ =
aαC2r2

(aCr2 + 1)2 , (13)

where we define ∆ = 8π(pt − pr) as the measure of anisotropy of the spherical system.65

The exterior Schwarzschild metric

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), (14)

across the boundary boundary of the star r = R, where M is the total mass of the sphere.66

Making use of the junction conditions, the constants A, B, C are determined as67

A =

√
R− 3M√

R
, (15)

C =
M

aR3 − 3aMR2 , (16)

B =
(R− 3M)(a(R− 2M)− αR)

R(R− 2M)
. (17)

Now the background metric (0)gµν(xν) of a NS in effect to external tidal field with
small perturbation hµν(xν) gets modified as

gµν(xν) =(0) gµν(xν) + hµν(xν). (18)

For the linearized metric perturbation hµν, using the method as in [20,21], without
loss of generality, we restrict ourselves to static l = 2, m = 0 even parity perturbation.
The perturbed metric with the assumption that the tidal deformation will be axis sym-
metric around the line connecting the two stars which we take as the axis of spherical
harmonic decomposition becomes as

hµν = diag
[

H0(r)e2ν, H2(r)e2λ, r2K(r), r2 sin2 θK(r)
]
Y2m(θ, φ). (19)



Version March 1, 2021 submitted to Journal Not Specified 4 of 8

Furthermore the perturbed energy momentum tensor is defined by Tξ
χ =(0) Tξ

χ +

δTξ
χ , where the non-zero components of Tξ

χ are: δTt
t = − dρ

dpr
δpr Y(θ, φ), δTr

r = δpr(r)Y(θ, φ),

& δTθ
θ = δTφ

φ = dpt
dpr

δpr(r)Y(θ, φ). With these perturbed quantities we can write down
the perturbed Einstein field equation as follows:

Gξ
χ = 8πTξ

χ , (20)

where the Einstein tensor Gξ
χ is calculated using the metric gχξ .68

From different components of the background Einstein field equation (0)Gξ
χ =

8π(0)Tξ
χ , we can have the following relationships:

(0)Gt
t = 8π(0)Tt

t ⇒ λ′(r) =
8πr2e2λ(r)ρ(r)− e2λ(r) + 1

2r
, (21)

(0)Gr
r = 8π(0)Tr

r ⇒ ν′(r) =
8πr2 pr(r)e2λ(r) + e2λ(r) − 1

2r
, (22)

where and hereafter the prime denotes the derivative w.r.t. the radial coordinate r.69

Also we know that ∇(0)
ξ Tξ

χ = 0. Now choosing ξ = r, by expanding and solving
the equation, we can find the expression

p′r(r) =
−rpr(r)ν′(r)− 2pr(r) + 2pt(r)− rρ(r)ν′(r)

r
. (23)

Again from the various components of the perturbed Einstein Equation (20), we get
the following relations

Gθ
θ − Gφ

φ = 0⇒ H0(r) = H2(r) = H(r), (24)

Gθ
r = 0⇒ K′ = H′ + 2Hν′, (25)

Gθ
θ + Gφ

φ = 8π(Tθ
θ + Tφ

φ )⇒ δpr =
H(r)e−2λ(r)(λ′(r) + ν′(r))

8π
dpt
dpr

r
. (26)

Using the identity

∂2Y(θ, φ)

∂θ2 + cot(θ)
∂Y(θ, φ)

∂θ
+ csc2(θ)

∂2Y(θ, φ)

∂φ2 = −6Y(θ, φ)

and Equations (21) – (26), we have the master equation for H(r) as

− 1
e−2λ(r)Y(θ, φ)

[
Gt

t − Gr
r
]
= − 8π

e−2λ(r)Y(θ, φ)

[
Tt

t − Tr
r
]

⇒ H′′(r) +RH′(r) + SH(r) = 0, (27)

where

R = −
(
−e2λ(r) − 1

r
− 4πre2λ(r)(pr(r)− ρ(r))

)
, (28)
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S = −
(

4e2λ(r) + e4λ(r) + 1
r2 + 64π2r2 pr(r)2e4λ(r) + 16πe2λ(r)

(
pr(r)

(
e2λ(r) − 2

)

−pt(r)− ρ(r)) +
−4π

dρ
dpr

e2λ(r)(pr(r) + ρ(r))− 4πe2λ(r)(pr(r) + ρ(r))
dpt
dpr

. (29)

The vacuum exterior of the star is of Schwarzschild type, so that by setting ρ =
0, pr = 0, pt = 0 and e2λ = 1/(1− 2M/r), the master Equation (27) becomes

−H′′(r)− 2(M− r)H′(r)
r(2M− r)

+
2H(r)

(
2M2 − 6Mr + 3r2)
r2(r− 2M)2 = 0. (30)

The solution to this second order differential equation (30) is

H(r) =
1

2M2r(2M− r)

[
c2

(
−2M

(
2M3 + 4M2r− 9Mr2 + 3r3

)
− 3r2(r− 2M)2

× log
( r

M
− 2
)
+ 3r2(r− 2M)2 log

( r
M

))]
+

3c1r(2M− r)
M2 , (31)

where c1 and c2 are integration constants. In order to obtain the expressions for these
constants, lets do series expansion of Equation (31)

H(r) = −3c1r2

M2 +
6c1r
M
−

c2
(
8M3)
5r3 +O

((
1
r

)4
)

. (32)

Now at large r the metric coefficient gtt is given by [17]:

(1− gtt)

2
=− M

r
−

3Qij

2r3

(
ninj − 1

3
δij
)
+O

(
1
r4

)
+

1
2
Eijxixj +O(r3), (33)

where ni = xi/r.70

Matching the asymptotic solution from Equation (32) with the expansion from
Equation (33) and using the Equation (1), we have

c1 = −M2E
3

, c2 =
15Q
8M3 . (34)

Using Equations (34), (31) and (2), we obtain the expression for TLN k2 as follows:

k2 = [8(1− 2C)2C5(2C(y− 1)− y + 2)]/X, (35)

where

X = (5(2C(C(2C(C(2C(y + 1) + 3y− 2)− 11y + 13) + 3(5y− 8))− 3y + 6)

+3(1− 2C)2(2C(y− 1)− y + 2) log
(

1
C − 2

)
− 3(1− 2C)2(2C(y− 1)− y + 2) log

(
1
C

)))
.

(36)

Here the Compactness C = M
R and y depends on r, H and its derivatives evaluated

at R with

y =
rH′(r)
H(r)

∣∣∣∣
r=R

. (37)
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To calculate numerically the value of k2 for a particular NS [22], one need to modify
the master Equation (27) using the Equation (37) as

ry′ + y2 + (rR− 1)y + r2S = 0. (38)

3. Results71

The recent data available from the pulsar 4U 1608− 52 (for the star to be composed72

of an anisotropic fluid distribution with α = 0.5) whose estimated mass and radius are73

M = 1.57 M� and R = 9.8 km, respectively [23,24] are used to find the constants are74

calculated as A = 0.53953, B = 0.291097, C = 0.008452. We set as a = 1. Making use of75

these values, we show graphically the nature of all the physically meaningful quantities76

in Fig. 1.77
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Figure 1. Physical features are plotted against the radial parameter for the compact star 4U 1608−
52.

Using the initial condition y(0) = 2 and all the mentioned equations, Equation (38)78

for a particular NS, can be numerically calculated. Having the numerical value of y, for79

a particular NS, from the Equation (35), the TLN k2 can be obtained numerically.80

4. Conclusions81

The plots clearly show that all the quantities comply with the requirements of a82

physically viable realistic star. In particular, the figures highlight the effect of anisotropy83

on the gross physical behavior of the compact star. In Fig. 2, the TLN k2 is plotted against84
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Figure 2. k2 is plotted against α for different compact objects with compactness C only for the
allowed values of α.

α for different compact objects with compactness C. From this panel of figures we note85

that k2 decreases monotonically with increasing α. This is a much expected physical86

property of a compact object with anisotropy.87

References
1. Abbott, B.P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 2017, 119,

161101.
2. Sawyer, R.F. Condensed π− phase in neutron-star matter. Phys. Rev. Lett. 1972, 29, 382–385.
3. Takatsuka, T.; Tamagaki, R. Nucleon superfluidity in kaon-condensed neutron stars. Prog. Theor. Phys. 1995, 94, 457–461.
4. Kippenhahn, R.; Weigert, A. Stellar Structure and Evolution; Springer-Verlag: Berlin, 1990.
5. Ruderman, R. Pulsars: Structures and dynamics. Ann. Rev. Astron. Astrophys. 1972, 10, 427–476. [CrossRef]
6. Weber, F. Pulsars as Astrophysical Observatories for Nuclear and Particle Physics; IOP Publishing: Bristol, 1999.
7. Sokolov, A.I. Phase transformations in a superfluid neutron liquid. J. Exp. Theor. Phys. 1980, 79, 1137–1140.
8. Mak, M.K.; Harko, T. An exact anisotropic quark star model. Chin. J. Astron. Astrophys. 2002, 2, 248–269.
9. Mak, M.K.; Harko, T. Anisotropic stars in general relativity. Proc. Roy. Soc. Lond. A 2003, 459, 393–408. [CrossRef]
10. Ivanov, B.V. Maximum bounds on the surface redshift of anisotropic stars. Phys. Rev. D 2002, 65, 104011. [CrossRef]
11. Gleiser, M.; Dev, K. Anistropic stars: Exact solutions and stability. Int. J. Mod. Phys. D 2004, 13, 1389–1397.
12. Böhmer, C.G.; Harko, T. Bounds on the basic physical parameters for anisotropic compact general relativistic objects. Class.

Quantum Gravit. 2006, 23, 6479–6491. [CrossRef]
13. Bayin, S.S. Anisotropic fluid spheres in general relativity. Phys. Rev. D 1982, 26, 1262–1274.
14. Herrera, L.; Santos, N.O. Local anisotropy in self-gravitating systems. Phys. Rep. 1997, 286, 53–130.
15. Hinderer, T.; Lackey, Benjamin D.; Lang, R.N.; Read, J.S. Tidal deformability of neutron stars with realistic equations of state and

their gravitational wave signatures in binary inspiral. Phys. Rev. D 2010, 81, 123016.
16. Flanagan, E.E.; Hinderer, T. Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D 2008,

77, 021502(R).
17. Hinderer, T. Tidal Love Numbers of neutron stars. Astrophys. J. 2008, 677, 1216–1220.
18. Thirukkanesh, S.; Ragel, F.C.; Sharma, R.; Das, S. Anisotropic generalization of well-known solutions describing relativistic

self-gravitating fluid systems: an algorithm. Eur. Phys. J. C 2018, 78, 31.
19. Tolman, R.C. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 1939, 55, 364–373. [CrossRef]
20. Regge, T.; Wheeler, J.A. Stability of a Schwarzschild Singularity. Phys. Rev. D 1957, 108, 1063–1069.
21. Biswas, B.; Bose. S. Tidal deformability of an anisotropic compact star: Implications of GW170817. Phys. Rev. D 2019, 99, 104002.
22. Rahmansyah, A.; Sulaksono, A.; Wahidin, A. B.; Setiawan. A. M. Anisotropic neutron stars with hyperons: implication of the

recent nuclear matter data and observations of neutron stars. Eur. Phys. J. C 2020, 80, 769.

http://dx.doi.org/10.1146/annurev.aa.10.090172.002235
http://dx.doi.org/10.1098/rspa.2002.1014
http://dx.doi.org/10.1103/PhysRevD.65.104011
http://dx.doi.org/10.1088/0264-9381/23/22/023
http://dx.doi.org/10.1103/PhysRev.55.364


Version March 1, 2021 submitted to Journal Not Specified 8 of 8

23. Roupas, Z.; Nashed, G.G. Anisotropic neutron stars modelling: constraints in Krori–Barua spacetime. Eur. Phys. J. C 2020, 80, 905.
24. Özel F. et al. The dense matter equation of state from neutron star radius and mass measurements. ApJ 2016, 820, 28.


	 Introduction
	 Physical features and tidal Love number
	 Results
	 Conclusions
	References

