

Article

Moon Mapping project results on Solar Wind ion flux and composition

Francesco Nozzoli 1,2* and Pietro Richelli ³

- INFN-TIFPA, Via Sommarive 14 I-38123 Trento, Italy
- ² ASI Space Science Data Center (SSDC), via del Politecnico s.n.c., I-00133 Roma Italy
³ Tropto University via Sommariya 14 I 38123 Tropto Italy
- Trento University, via Sommarive 14 I-38123 Trento, Italy
- ***** Correspondence: Francesco.Nozzoli@unitn.it

Version February 22, 2021 submitted to Universe

- **Abstract:** The "Moon Mapping" project is a collaboration between the Italian and Chinese
- Governments allowing cooperation and exchange from students from both countries. Main aim of
- ³ the project is to analyze remotely-sensed data collected by the Chinese space missions Chang'E-1/2
- over the Moon surface . The Italian Space Agency is responsible for the Italian side and the Center
- of Space Exploration, China Ministry of Education, is responsible for the Chinese side. The results
- of the "Moon Mappining" project topic #1: "map of the solar wind ion" using data collected by
- Chang'E-1 satellite are summarized. Chang'E-1 is a lunar orbiter, the revolution period is 2h and
- the orbit is polar. The satellite is equipped with two Solar Wind Ion Detectors (SWIDs) that are two perpendicular electrostatic spectrometers mapping the sky with 24 channels with a field of view of
- 10 15°x6.7° each. The spectrometers can measure solar wind flux in the range $40eV/q 17keV/q$ with
- an energy resolution of 8%. The data collected by the two Solar Wind Ion Detectors are analyzed
- to characterize the solar wind flux and composition on the Moon surface, studying the large time
- variation due to the solar activity. The data measured by Chang'E-1, as compared with the one
- measured in the same period by the electrostatic spectrometers onboard the ACE satellite, enrich the
- multi-messenger/multi-particle view of the Sun, gathering valuable information about the space
- weather outside the Earth magnetosphere.

Keywords: Solar Wind; Space Weather; Moon Mapping

1. Introduction

19 The "Moon Mapping" project is a collaboration between the Italian and Chinese Governments allowing cooperation and exchange from students from both countries. Main aim of the project is to analyze remotely-sensed data collected by the Chinese space missions Chang'E-1/2 over the Moon surface . The Italian Space Agency is responsible for the Italian side and the Center of Space Exploration, China Ministry of Education, is responsible for the Chinese side. The project has six ²⁴ research topics : (1) map of the solar wind ion; (2) geo-morphological map of the Moon; (3) data pre-processing of Chang'E-1 mission; (4) map of element distribution; (5) establishment of 3D digital visualization system; and (6) compilation and publication of a tutorial on joint lunar mapping. Most of the results of the Moon Mapping project are collected in [\[1](#page-5-0)[,2\]](#page-5-1), here the details of the results of topic #1 are summarized.

1.1. The Solar Wind investigation

₃₀ The nature of solar wind is an important object of study, there have been a lot of space projects 31 launched in recent decades which probed it, e.g., SOHO [\[3\]](#page-5-2), ACE [\[4\]](#page-5-3) and WIND [\[5\]](#page-5-4) which are near the Sun–Earth L1 Lagrange point, STEREO [\[6\]](#page-5-5) and Ulysses [\[7\]](#page-5-6) which are in heliocentric orbits, and ³⁴ space exploration becomes an hot topic in the last decades. In particular Japan launched SELENE

- ³⁵ Explorer [\[10\]](#page-5-9) in 2007 and India launched Chandrayaan-1 [\[11\]](#page-5-10) in 2008. China also constructed and
- ³⁶ launched Chang'E-1 spacecraft in October 2007. This is an unmanned lunar-orbiter equipped with
- 37 different scientific instruments, in particular two Solar Wind Ion Detectors (SWIDs) was mounted on
- ₃₈ the spacecraft. SWID detectors were designed to measure the solar wind ion differential flux. The ³⁹ analysis of the composition of the solar wind improves our understanding of the Sun and allows to
- construct a model of the cislunar space environment. The solar wind is composed of ions, mainly
- 41 protons and electrons, a small component of light elements (He⁺⁺ and $O⁶⁺$) as well as traces of heavy
- ⁴² elements like Si and Fe [\[12\]](#page-5-11). Solar wind is accelerated by the pressure difference between the solar

⁴³ corona and the interplanetary space at velocities large enough to allow particles to escape from the

⁴⁴ gravitational field of the Sun. Typical velocity of solar wind ranges from 300 to 700 km/s however the

average velocity, as well as, the flux and the relative composition are subject to variations related to

⁴⁶ solar activity. The interaction of the Earth's magnetosphere with the solar wind, is a key factor of the

⁴⁷ Space Weather studies providing a sizable impact on space technology.

⁴⁸ **2. The Chang'e-1 SWID detectors**

⁴⁹ The Solar Wind Ion Detector (SWID) of the Chang'E-1 orbiter is described by [\[13\]](#page-5-12). The field of view (FOV) of each SWID detector is approximately 6.7*o*× 180*^o* ⁵⁰ , therefore is mainly observing a plane. The SWID measures ion differential flux arriving from half (180*^o* ⁵¹) of that plane, with a Micro Channel ⁵² Plate (MCP) detector anode divided into 12 equal readouts, each has an angular view of 15⁰ (see Fig. $53 \quad 1$).

Each SWID can measure ion differential flux distributed in 48 energy bins on a log-scale ranging 55 from 40eV/q to 17 keV/q with an energy resolution of 8%.

⁵⁶ Two identical SWID detectors (SWIDA and SWIDB) were installed on Chang'E-1, they were ⁵⁷ mutually perpendicular to provide a large FOV, as illustrated in Fig. [1](#page-2-0) [\[14\]](#page-5-13).

⁵⁸ **3. Data sample**

⁵⁹ SWID data are stored in PDS (Planetary Data System) files. Each record consists of: time, a 48x12

⁶⁰ array storing ion flux across the 48 energy bins and 12 directions. In the PDS file are stored also

⁶¹ Geocentric Solar Ecliptic (GSE) coordinates and Moon Center Coordinate (MCC) of the orbiter, Quality

⁶² state, and Instrument Sun Incidence Angle. A sample of data file from SWIDA is shown in Table [1.](#page-1-0)

63 Detailed information on the data of SWID are in [\[15\]](#page-5-14) and references therein. The flux measured by

⁶⁴ SWIDA and SWIDB is sampled each 3s, data are stored in separate files for each orbit around the

⁶⁵ Moon (2h). In the two different periods, December/2007 to February/2008 and May/2008 to July/2008

- ⁶⁶ SWIDA and SWIDB collected about 5000 files (over 57 GB) of solar wind data preserved also in the
- ⁶⁷ ASI/SSDC data-hub [\[16\]](#page-5-15).

Data item	Unit.	Sample
Time	Timestamp	2007-11-26T21:10:40.893Z
Flux	[keV cm ² s sr] ⁻¹	a [48x12] matrix
GSE coo	Earth radii	-48.5635, -30.1448, 4.4484
MCC coo	km	-172.1049, -21.0871, 1945. 3538
Sun angle	Deg.	84.2097, 158.3941, 110.7401
Quality stat.	Bit-coded	0×0000 FF

Table 1. Example of a record of a SWIDA data file.

⁶⁸ A specially developed 3D visualization method to handle a single Chang'E-1 SWIDs data record

⁶⁹ is described in [\[15\]](#page-5-14). In the following a global analysis of Chang'E-1 SWIDs data is considered.

⁷⁰ **4. Solar wind distribution map**

⁷¹ The solar wind flux, as measured by a specific SWID channel, is maximum when the Sun lies in the FoV of that channel (cos θ_{sun} =1). Considering the $6.7^{\circ} \times 15^{\circ}$ FWHM distributions of each channel (Fig. [1\)](#page-2-0) the angular resolution of SWID channels is expected to be of the order of few degree. Such a modest resolution is not enough to detect the details of the Sun surface structure, but, thanks to the absence of a strong lunar magnetosphere, an image of the Sun in the sky as a source of the solar wind ions can be produced by stacking all the SWIDA/B measurements.

- ⁷⁷ This is shown in Fig[.2,](#page-3-0) a charged particle image of our star obtained by Chang'E-1 that can be ⁷⁸ compared with the other existing multimessenger images of the Sun, namely: gamma rays from
- ⁷⁹ Fermi-LAT [\[17\]](#page-5-16) and neutrinos from Super-Kamiokande [\[18\]](#page-5-17).
- 80 A similar image of the Sun cannot be obtained with a detector orbiting the Earth due to the 81 deflection of slow charged particle in magnetic fields.

Figure 1. Basic principle diagram of SWID. The orbit of the Chang'E-1 spacecraft allows to scan a large fraction of the sky in the field of view of the SWIDs.

Figure 2. Sun centered solar wind flux map as measured by Chang'E-1. The apparent angular size of the Sun in this map is compatible with the 15*o*FWHM angular aperture of the Chang'E-1 SWID channels.

⁸² **5. Solar wind flux**

83 The Chang'E-1 solar wind flux measurement as a function of time shown in fig. [3,](#page-4-0) it is ⁸⁴ obtained by juxtaposing all the flux measurements for SWID channels that lies within 15[°] from ⁸⁵ the expected Sun position. During the Chang'E-1 SWIDs data taking: December/2007-February/2008 86 and May/2008-July/2008 the Sun was experiencing a Solar minimum activity, at the end of the cycle 87 23. Despite the minimum of Sun activity, variations in the sunspots number [\[19\]](#page-5-18) and in the magnitude 88 of solar flares [\[20,](#page-5-19)[21\]](#page-5-20) has been recorded. Such variations in Sun activity are confirmed by the variations ⁸⁹ of intensity and velocity of the flux measured by Chang'E-1, shown in fig. [3.](#page-4-0) In particular, there is a very good correlation of the average kinetic energy measured by Chang'E-1 with the one inferred ⁹¹ by solar wind velocity measured by ACE [\[22\]](#page-5-21) orbiting the Sun-Earth L1 Lagrange point in the same ⁹² period (red dots). ⁹³ Finally also the solar wind chemical composition is known to vary with Sun activity. Typical

⁹⁴ energy distribution measured by Chang'E-1 is shown in top plot of fig. [4.](#page-4-1) The SWID spectrometers ⁹⁵ cannot identify the particle mass, however, three peaks can be recognized over the spectrometer ⁹⁶ background. The main peak is due to the abundant flux of protons.

The second peak is dominated by doubly ionized Helium, He^{++} , whereas the third small bump ⁹⁸ is a superposition of heavier ionized elements, mainly Oxygen, Silicon and Iron [\[12\]](#page-5-11). In the bottom ⁹⁹ plot of fig. [4](#page-4-1) the relative amplitude of these components during the Chang'E-1 data taking periods is shown. In particular, as expected, the He⁺⁺ abundance in the solar wind is just a few % whereas the ¹⁰¹ abundance of heavier elements is below ‰.

¹⁰² **6. Conclusions**

¹⁰³ Solar Wind Ion Detectors, were able to measure the solar wind and the plasma environment near ¹⁰⁴ the Moon, onboard the Chang'E-1 orbiter. SWIDs was able to provide an interesting picture of the Sun

Figure 3. Solar wind flux measured by Chang'E-1 as a function of time and kinetic energy. The time variation of the average kinetic energy are in good correlation with the measured solar wind velocity by ACE (red dots).

Figure 4. Top plot: typical solar wind energy distribution measured by SWIDs. Bottom plot: relative abundances of He^{++} (red) and heavier ions (blue) measured during Chang'E-1 mission.

¹⁰⁵ based on charged particles, enriching the collection of multimessenger information of our star. The ¹⁰⁶ correlation of the flux variability and spectrum as measured by Chang'E-1 with respect to the other existing solar activity indicators can be of large interest from the point of view of space weather studies

and applications.

References

- 1. M. Scaioni et al. , *Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.* **2016**, *XLI-B6*, 71–78.
- 2. *https://www.ssdc.asi.it/news/MoonMapping_textbook_ItalyChinaWeek2018.pdf*
- 3. V. Domingo et al., *Sol. Phys.* **1995**, *162*, 1.
- 4. G. Gloeckler qt al. *Sp. Sci. Rev.* **1998**, *86*, 497.
- 5. K.W. Ogilvie et al., *Sp. Sci. Rev.* **1995**, *71*, 55.
- 6. M.L. Kaiser, *Adv. in Sp. Res.* **2005**, *36*, 1483.
- 7. K.P. Wenzel et al., *Adv. in Sp. Res.* **1989**, *9*, 25.
- 8. C.W. Carlson et al., *Geophys. Res. Lett.***1998**, *25*, 2013.
- 9. C. Reigber et al., *Adv. in Sp. Res.***2002**, *30*, 129.
- 10. M. Kato et al., *Sp. Sci. Rev.***2010**, *154*, 3.
- 11. A. Bhardwaj et al., *Adv. Geo.* **2012**, *1*, 35.
- 12. S.J. Bame, *NASA Spec. Pub.* **1972**, *308*, 1.
- 13. S. Huixian et al., J. of Earth Syst. Sci. **114** (2005) 789.
- 14. L.G. Kong et al. Plan. Sp. Sci. **62** (2012) 23.
- 15. T. Zhang et al. Comp. & Geosci. **37** (2011) 171.
- 16. *https://solarsystem.ssdc.asi.it/moonmapping/*
- 17. M. Aiello et al. (Fermi-LAT coll.), *Ap.J.Supp.* **252** (2021) 13.
- 18. Super-Kamiokande Official Website: http://www-sk.icrr.u-tokyo.ac.jp/sk/sk/solar-e.html
- 19. J.H. King and N.E. Papitashvili, J. Geophys. Res. **110** (2005) A02209.
- 20. Watanabe, K., S. Masuda, and T. Segawa, Hinode Flare Catalogue, Solar Physics, **279** (2012) 317-322.
- 21. RHESSI catalogue hosted by the Goddard Space Flight Center: *https://hesperia.gsfc.nasa.gov/rhessi3/*
- 22. ACE catalogue at Caltech : *http://www.srl.caltech.edu/ACE/ASC/level2/lvl2DATA_SWICS_PROTONS.html*
- © 2021 by the authors. Submitted to *Universe* for possible open access publication under the terms and conditions
- of the Creative Commons Attribution (CC BY) license [\(http://creativecommons.org/licenses/by/4.0/\)](http://creativecommons.org/licenses/by/4.0/.).